SCS ENGINEERS

Results of Additional Subsurface Investigation with 2nd Quarter 2005 Groundwater Monitoring and Sampling Event

Former A-1 Rentals
458 West College Avenue
Santa Rosa, California
(Assessor's Parcel No. 010-441-011)
(NCRWQCB Case No. 1TSR364)

File Number 01203354.00

Prepared by:

SCS Engineers 3645 Westwind Boulevard Santa Rosa, California 95403

To:

Mr. Jim Tischler North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

July 29, 2005

LIMITATIONS/DISCLAIMER

This report has been prepared for the Former A-1 Rentals site with specific application to subsurface exploration and a quarterly monitoring event for the property located at 458 West College Avenue, Santa Rosa, California. This report has been prepared in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. The conclusions contained herein are based on analytical data, and points of exploration. The nature and extent of subsurface conditions may and likely do vary between borings and/or points of exploration. No other warranty, either expressed or implied, is made as to the professional conclusions and proposal presented herein.

Access to the property and the surrounding area was and is limited by buildings, roadways, underground and above-ground utilities and other miscellaneous site and site vicinity features. Therefore, the field exploration and points of subsurface observation were and are somewhat restricted.

Changes in site use and conditions may occur due to man-made changes or variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this assessment and proposal or changes which may occur on the site or in the surrounding area may result in modification to the site and the vicinity that would impact the summary and proposal presented herein. This report is not a legal opinion.

We trust this report provides the information you require at this time and we appreciate the opportunity to work with you on this project. If you require any additional information, or have any questions, please do not hesitate to contact SCS at (707) 546-9461.

Kevin L. Coker REA 7887

CA registration fees paid through 06/30/06

Date

Stephen Knuttel PG 7674

CA registration fees paid through 07/31/07

29. JULY, 05

Date

Introduction

SCS Engineers (SCS) is pleased to present the results of additional subsurface investigation and the 2nd Quarter 2005 groundwater monitoring and sampling event for the Former A-1 Rentals site located at 458 West College Avenue, Santa Rosa, California. The additional subsurface investigation described herein was performed in accordance with SCS' Work Plan and subsequent revisions (SCS, 2004a, 2004c, 2004d, 2004f) which were approved by the North Coast Regional Water Quality Control Board (NCRWQCB, 2004b). The site is located as shown on the Site Location Map, Figure 1 (Assessor's Parcel No. 010-441-011). General site features are shown on the Site Plan, Figure 2.

Background

The property located at 458 West College Avenue in Santa Rosa, California is owned by Mr. Jim Biocca, Mr. David Phillips, and Mrs. Dale Phillips. The property is currently used as a rental yard under the name Nations Rents and is referred to in this document as the Former A-1 Rentals site.

The Site has had numerous documented underground storage tanks (USTs) over the course of its operation, a summary of which follows: in 1986, one 6,000-gallon gasoline UST, one 350-gallon two-cycle engine fuel UST, one 1,000-gallon gasoline UST, and one 1,000-gallon diesel UST were removed from the site under the direction and ownership of Mr. Gene Fish (Malcolm Pirnie, Inc.[MP], 1999a, 1999b; Santa Rosa Fire Department [SRFD], 1986, 1993); in 1999 one 1,000-gallon gasoline UST, and one 350-gallon waste oil UST were removed under the direction and ownership of Mr. Biocca and Mr. Phillips (M.R.L. Underground Tank Testing, Inc. [MRL], 1999; MP, 1999a, 1999b); and in 2004 one 10,000-gallon gasoline and one 10,000-gallon diesel UST were removed from the site under the direction of Nations Rents, without prior approval or direction from Mr. Biocca or Mr. Phillips. A report summarizing the results of the 2004 UST removal activities was not available for review at the time of publication of this report. The approximate locations of the former USTs are illustrated on Figure 2 and numerically designated from #1 through #8.

Based on available information, Mr. Fish owned the property until approximately 1987 at which time Mr. Fish sold the property to the current owners, Mr. Biocca and Mr. and Mrs. Phillips (Wheeler, A., 2001; Biocca, J., 2001). Employees at the site and the current site owners have been contacted regarding the Site history with respect to USTs. Information was provided which dates back to approximately 1987. No information was provided or known regarding UST removal activities in 1986. Unfortunately, when inquiry was last made, Mr. Fish had Alzheimers and could not provide any useful information (Biocca, J., 2001).

The files of the NCRWQCB and the SRFD were reviewed on March 30, 2001. The files at the NCRWQCB contain analytical reports for soil and water samples collected at the site on January 20, 1986, February 4, 1986, March 18, 1986, May 8, 1986, and December 19, 1986 (Table 1). The files at the SRFD do not contain any additional information pertaining to the UST removals in 1986 not

present in the NCRWQCB files. Files of the Sonoma County Department of Health Services (SCDHS) were reviewed on April 3, 2001. The SCDHS files contain permit information pertaining to drilling in 1999 and the more recent drilling in 2001, with no information about 1986 activities.

During the March 1999 UST removal activities, soil and groundwater samples were collected from the UST excavation pits (MP, 1999b). Soil and groundwater analytical results indicated an impact by petroleum hydrocarbons (Tables 2A and 2B; MP, 1999b).

In October 1999, MP conducted a Phase I Environmental Site Assessment (ESA), which was followed by a limited Phase II ESA in November 1999 (MP, 1999a, and 1999b). Seven exploratory borings (S-1 through S-7) were advanced at the approximate locations shown on Figure 2 under the direction of MP (MP, 1999b). Soil and groundwater samples were collected from each of the borings at approximate depths ranging from 2 feet below existing ground surface (bgs) to 18 feet bgs. The borings were apparently advanced near the waste oil UST, the gasoline UST pit, the gasoline piping, and the gasoline dispenser (Figure 2, MP, 1999b). Soil and groundwater samples indicated an impact by petroleum hydrocarbons and other volatile organic compounds (VOCs) reported by EPA Test Method 8260 (Tables 3 and 4; MP, 1999b). The NCRWQCB subsequently issued a directive to perform additional site characterization (NCRWQCB, 2000).

In January 2001, 22 borings (B-101 through B-122) were drilled, and sampled at the approximate locations shown on Figure 2 (PNEG¹, 2001a). Of the 22 borings drilled, groundwater samples were successfully collected through the Hydropunch® in 11 borings, with grab groundwater samples collected from the remaining 11 borings. The soil samples collected from the 22 borings were generally non-detect (ND) for petroleum hydrocarbons with total petroleum hydrocarbons as gasoline (TPH-g) detected at a maximum concentration of 84 milligrams per kilogram (mg/kg)in the B-114-10' sample, and TPH as diesel (d) occurring at a maximum concentration of 68 mg/kg in the B-112-5' sample. Benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents were detected at a maximum concentration of 3.0 mg/kg xylenes in the sample from B-111-10'. Of the soil samples collected and analyzed 95% were ND for TPH-g, TPH-d, BTEX, and methyl tert butyl ether (MTBE, Table 5). Soil and water samples collected from boring B-113 were noted to have an apparent non-petroleum hydrocarbon odor. Those samples with the non-petroleum hydrocarbon odor were analyzed by EPA Method 8260 and chlorobenzene (CB) was detected in soil at 0.06 mg/kg in the sample collected at a depth of 10 feet (Table 5).

TPH-g was detected in the groundwater of 13 out of 22 samples at a maximum concentration of 61,000 micrograms per liter (ug/L) in the B-119-Water sample. Generally lower concentrations of TPH-d were detected in 6 out of 22 samples with the highest concentration being 20,000 ug/L in the B-119-Water sample. The TPH-g and TPH-d was suspected to represent different weight components of the same petroleum hydrocarbon product in several water samples, as the TPH-d was only detected in borings which contained TPH-g. The releases appeared to be very weathered based on the relatively low concentrations of BTEX compounds detected (indicating some natural

¹ Pacific Northwest EnviroNet Group, Inc. (PNEG) became a part of SCS in July 2003.

attenuation of these compounds), the highest being 470 ug/L ethylbenzene (B-111-Water), followed by 100 ug/L ethylbenzene in the B-112-Water sample. The water samples from B-111 and B-112 contained 41 and 56 ug/L benzene, respectively, possibly suggesting a more recent release in this area. MTBE was detected at a concentration greater than 5 ug/L in the samples from B-101, B-110, B-112, B-113, and B-116 (Table 6). All positive detections of MTBE by EPA Method 8020 were confirmed by EPA Method 8260 (Table 6). CB was detected in the water samples from B-112 and B-113 at concentrations of 510 ug/L and 430 ug/L, respectively, (Table 7).

A cone penetrometer test (CPT) rig was mobilized to the site on August 19 and 21, 2003 to assess the depth of the next lower water-bearing zone at the site. A total of four CPT test holes were successfully pushed at the site; these holes were identified as CPT-01 through CPT-04 and their locations are shown on Figure 2 (SCS, 2003a). Six monitoring wells (MW-01 through MW-06) were drilled and installed between the dates of August 18, and 21, 2003 at the approximate locations shown on Figure 2 (SCS, 2003a), and six borings (B-123 through B-128) were drilled to a maximum depth of approximately 17 feet bgs at the approximate locations shown on Figure 2 (SCS, 2003a).

The soil samples collected from the monitoring well borings were ND for all target analytes, with the exception of MW-05-5' and MW-05-10' which contained TPH-g at concentrations of 4.6 mg/kg, and 4.5 mg/kg, respectively, and trace concentrations of BTEX constituents occurring at a maximum concentration of 0.11 mg/kg ethylbenzene in MW-05-10'. TPH-g and TPH-d were detected in the samples collected from soil boring B-126 at depths of 5 feet and 10 feet bgs at concentrations of 160 mg/kg, and 90 mg/kg TPH-g, respectively; and 540 mg/kg and 50 mg/kg TPH-d, respectively, and were ND in all other samples analyzed (Table 8). BTEX constituents and the five ether-based oxygenates were ND in all samples analyzed, with the exception of 0.26 mg/kg ethylbenzene in B-126-10', 0.0029 mg/kg MTBE in B-124-15', 0.0076 mg/kg MTBE in B-127-5', and 0.0035 mg/kg MTBE in B-127-10'. The additional VOCs (excluding BTEX and the five ether-based oxygenates) were detected in the samples collected from B-124-5', B-124-15', B-125-10', B-125-15', B-126-5', B-126-10', B-126-15', B-127-5', B-127-10', and B-127-15' at a maximum concentration of 1.8 mg/kg CB in B-127-5' (Table 8).

TPH-g and TPH-d were detected in the samples collected from the CPTB-03 boring at depths of 5' and 10' at concentrations of 42 mg/kg, and 96 mg/kg TPH-g, respectively, and 53 mg/kg, and 86 mg/kg TPH-d, respectively. TPH-g and TPH-g were ND in the samples collected from the CPTB-02 boring. The five ether-based oxygenates and BTEX constituents were ND in all samples collected from the CPT borings (Tables 11 and 12). VOCs were detected in the CPT-03 boring at depths of 5' and 10' bgs at maximum concentrations of 0.63 mg/kg CB and 1.8 mg/kg n-propylbenzene, respectively (Table 13).

TPH-g was detected above the laboratory reporting limit in the sample collected from B-128 at a concentration of 610 ug/L, and was ND in all other grab groundwater samples. BTEX constituents were detected above the laboratory reporting limit in the sample collected from B-125 at concentrations of 19 ug/L benzene, and 33 ug/L ethylbenzene, and were ND in all other grab groundwater samples. MTBE was detected at concentrations of 11 ug/L and 11 ug/L, in B-124 and B-125, respectively, and was ND in all other grab groundwater samples. The additional VOCs

(excluding BTEX and the five ether-based oxygenates) were detected in each of the grab groundwater samples collected from B-123 through B-128 ranging from 5.6 ug/L tert-butylbenzene in B-124 to 9,800 ug/L 1,2-dichlorobenzene in B-126 (Table 9). The grab groundwater samples collected from each of the four CPT borings were ND for all target analytes, with the exception of 1.5 ug/L MTBE in CPTB-04-45' and 1.9 ug/L CB, and 1.6 1,2-dichlorobenzene in CPTB-03A-61.8' (Table 14).

Sensitive Receptor Survey

Pursuant to a directive from the NCRWQCB, a sensitive receptor survey (SRS) was performed for the site. Well logs received from the California Department of Water Resources (DWR) were reviewed. Numerous wells were identified within 1,500 feet of the subject site. Approximately 500 feet to the west of the subject site is a residential neighborhood located in a county island. Most of these residences have domestic wells, several of which were identified within the 1,500 foot radius of the site. A municipal water supply well was located at 1304 Cleveland Avenue (less than ½ mile from the subject property). Santa Rosa Creek is located approximately 4,000 feet to the south of the site.

Additionally, as requested by the NCRWQCB, the area was inspected for soil vapor receptors within a 250 foot radius of the site. Utility maps were obtained from the City of Santa Rosa for the sanitary sewer, city water, and storm drains. A 12-inch diameter water line and a 12-inch diameter sewer line are located near the center of College Avenue directly north of the site. A storm drain runs along the north side of College Avenue. These maps were reviewed to investigate possible pathways for contaminant transport in the area surrounding the site.

The results of a door-to-door survey of the area to the west, conducted as part of the response to the release of dry cleaning solvents at Sonoma French Dry Cleaners (946 West College Avenue) has not been accessed. To date, SCS has not received a response from the NCRWQCB indicating whether or not the SRS for the subject site can be reduced based on existing information in the NCRWQCB files.

A SRS was conducted for 1025 North Dutton Avenue, just east of the subject site. A door-to-door portion of the survey did not reveal the presence of domestic wells within 750 feet of the 1025 North Dutton Avenue site. Other sites with a history of soil and/or groundwater impacts in close proximity to the subject property are located at 225, 257, 336, 312, and 471 West College Avenue and 360 Tesconi Circle. A review of the files for these sites at the NCRWQCB did not provide any relevant sensitive receptor data.

Site Conceptual Model Hydrogeology

The site is situated within the City of Santa Rosa city limits in an area which is generally characterized by residential and commercial development. The surface topography in the area of the site is relatively flat; with the site being approximately 130 feet above mean sea level (msl). The nearest water body is Santa Rosa Creek which is located approximately 0.65 miles south of the site. The site is bordered by West College Avenue to the north, commercial development and Dutton Avenue to the east, and residential units to the south and west.

The site specific lithology consists of an upper clayey to silty unit to a depth of approximately 10 to 15 feet bgs which is underlain by a sand unit with interbedded silts and clays to a depth of approximately 30 feet bgs. Lenses and layers of gravel, clayey sand, sandy clay, clayey gravel, gravelly clay, silty gravel, silty sand, silt, gravel, and sand have been observed in all borings drilled at the site. Initial free groundwater has been detected at depths as shallow as 6 feet bgs and as deep as 42 feet bgs within the upper water-bearing zone. Where present the sand and gravel lenses greater than 8 feet bgs have been observed to be generally saturated with water. A relatively clean sand unit with lenses of gravel has been identified to a depth of approximately 40 feet bgs, which is underlain by a relatively stiff to hard clay to silt layer to an approximate depth of 55 feet bgs. This unit transitions to an interbedded silt/clay unit with clayey to silty sands to the maximum depth explored of 61.8 feet bgs.

Monitoring Well Installation and Soil Boring - 2005

Five additional monitoring wells (MW-07 through MW-11) were drilled, sampled and installed, and one additional boring (B129) was drilled and sampled at the approximate locations shown on Figure 2, between the dates of May 2 and 3, 2005. B-129 was drilled through the former southern UST locations at the Site (Figure 2) using 8-inch diameter hollow stem augers to a maximum depth of approximately 21.5 feet bgs (Appendix A). The monitoring well borings were drilled using 8-inch diameter hollow stem augers and were converted into monitoring wells using 2-inch diameter Schedule 40 flush threaded PVC material. The screened interval in the monitoring wells consists of 0.010-inch, machine-slotted screen which extends from approximately 5 to 20 feet bgs. A #2/12 sand was used to create a filter pack around the screen and an approximate 2 foot thick bentonite seal was placed on top of the sand filter pack. The wells were completed to the surface with a cement seal. The PVC well casing in each monitoring well extends to within 6 inches bgs and is fitted with a waterproof locking cap. The wells are protected by traffic-rated, water-tight circular vaults. Additional well completion details are presented on the Well Completion Diagrams, Appendix B.

Based on the results of the previous drilling programs, soil samples were collected and examined for lithology from each of the monitoring well borings beginning at an approximate depth of 5 feet bgs,

and every 5 feet thereafter to a maximum depth of approximately 21 feet bgs. Three soil samples from each of the borings were submitted for analysis. Two soil samples were collected from boring B-129 at depths of 15.5 and 20.5 feet bgs, and were submitted for analysis. The ends of the sample tubes selected for analysis were covered with Teflon® Tape and sealed with plastic caps. A grab groundwater samples was collected from B-129 using a disposable bailer and was placed into the appropriate containers supplied by the laboratory for analysis. Soil and groundwater samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody documentation to Analytical Sciences (AS) of Petaluma, California for analysis. AS is a California Department of Health Services certified laboratory for the analysis requested. Copies of AS' current certifications have been reviewed and are on file. The soil samples were collected following Standard Soil and Water Sampling Procedures and QA/QC Protocol.

The augers were pressure washed, and the small sampling equipment was washed in a detergent solution and rinsed. The drill cuttings were placed on and covered with plastic sheeting, pending disposal. The water generated by decontamination, well development, and sampling is stored at the site in steel 55-gallon UN/DOT-approved drums, pending disposal. Options for the disposal of the soil and groundwater are being evaluated.

Cone Penetrometer Testing - 2005

SCS proposed to locate the second viable water-bearing zone beneath the site with the use of CPT equipment (SCS, 2004a, 2004c, 2004d, 2004f). The CPT rig mobilized to the site and conducted a lithology study on May 4, 2005. Three test holes (CPT-05, CPT-06, and CPT-07) were advanced at the approximate locations shown on Figure 2. Water-bearing zones were identified at approximate depths of 30 and 40 feet bgs in the CPT-05 test hole; and at 40 feet bgs in both the CPT-06 and CPT-07 test holes. Grab groundwater samples were collected at these depths. A copy of the laboratory report is presented in Appendix C. Copies of Gregg Drilling & Testing's CPT Reports are presented in Appendix D.

Well Development

The five newly installed monitoring wells (MW-07 through MW-11) were developed on May 9 and 10, 2005 using a surge block and a submersible field portable groundwater purging pump. Information obtained during well development was recorded on field sampling forms from which Well Development Records were generated, copies of which are presented in Appendix E.

Groundwater Monitoring

After the newly installed monitoring wells were developed, they were allowed to set for approximately 1 day prior to collecting depth to groundwater measurements. Depth to groundwater

Former A-1 Rentals - File 01203354.00 Results of Additional Subsurface Investigation with 2nd Quarter 2005 Groundwater Monitoring and Sampling Event

measurements were collected from each of the previously existing wells (MW-01 through MW-06) in addition to the newly installed wells (MW-07 through MW-11) on May 11, 2005. Depth to groundwater measurements ranged from approximately 5.5 to 8.5 feet below existing ground surface (bgs). The depth-to-groundwater measurements were combined with the well casing elevations to determine the groundwater flow direction and gradient. Casing and groundwater elevations are reported in feet relative to mean sea level. Depths to groundwater are expressed in feet. For the 2nd quarter 2005 sampling event, the groundwater flow direction was determined to be variable due to suspected excessive recharge near the center of the Site (Figure 3, Table 13).

Groundwater Sampling

After depth to groundwater measurements were collected, each well was checked for the presence of free product by subjective evidence and using an oil/water interface probe. No free product was reported during this monitoring event. The wells were then purged of approximately 3 wetted well casing volumes of groundwater, or at least 5 gallons, whichever was greater, using a submersible pump. Temperature, pH, conductivity, turbidity, and dissolved oxygen were measured during purging to help demonstrate that fresh groundwater was entering the well casing for sampling. Each well was allowed to recover prior to sampling. Groundwater samples were collected using a separate disposable bailer for each well, and were transferred into the appropriate containers supplied by the laboratory for analysis. The samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody to AS. All samples were collected following Standard Soil and Water Sampling Procedures and QA/QC Protocol. Information obtained during sampling was recorded on field sampling forms from which Well Purge Records were generated, copies of which are presented in Appendix E. The groundwater generated during the recent well sampling activities is stored at the site in 55-gallon UN/DOT-approved drums, pending disposal.

Well Survey

The tops of the new monitoring well casings were surveyed on July 6, 2005 under the supervision of a California licensed land surveyor to 0.01 feet to determine their elevations relative to mean sea level. A copy of the well survey report is presented in Appendix F. In addition, the latitude and longitude of the monitoring wells has been determined to within 1 meter. The surveyed monitoring well elevations and monitoring well locations will be submitted electronically to the State Department of Water Resources Geotracker database.

Laboratory Analysis

The soil samples collected from the monitoring well borings and soil boring B-129 were analyzed for TPH-g, BTEX, and MTBE by EPA Method 8015M/8020. The grab groundwater sample collected from B-129 was analyzed for TPH-g, BTEX, and the five ether based oxygenates by EPA

Former A-1 Rentals - File 01203354.00 Results of Additional Subsurface Investigation with 2nd Quarter 2005 Groundwater Monitoring and Sampling Event

Method 8260B. The groundwater samples collected from The CPT borings were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B full scan. Groundwater samples collected from the previously existing wells in addition to the newly installed wells were analyzed for TPH-g by EPA Method 5030/8015M and for VOCs by EPA Method 8260B full scan.

Soil Analytical Results

The soil samples collected from the monitoring well borings and boring B-129 were below the laboratory report detection limit (RDL) for all target analytes, with the exception of 0.025 mg/kg toluene, 0.023 mg/kg xylenes in the MW-08@10.5' sample, and 4.4 mg/kg lead in the MW-08@5.5' sample. Soil analytical results are presented in Tables 8 and 10.

Groundwater Analytical Results

The grab groundwater sample collected from B-129 contained MTBE at a concentration of 1.9 ug/L and was below the laboratory RDL for all other target analytes. The groundwater samples collected from the CPT test holes were below the laboratory RDL for all target analytes.

The information contained herein represents the eighth consecutive sampling event for MW-01 through MW-06, and the first sampling event for newly installed wells MW-07 through MW-11. TPH-g was detected at concentrations of 220 ug/L, and 330 ug/L in newly installed wells MW-07 and MW-11, respectively, and was below the laboratory RDL in MW-08, MW-09, and MW-10. MTBE was detected in MW-09 and MW-10 at concentrations of 12 ug/L, and 1.5 ug/L, respectively, and was below the laboratory RDL in MW-07, MW-08, and MW-11. Non-gasoline components were detected in MW-07, MW-09, and MW-10 at a maximum concentration of 90 ug/L chlorobenzene in MW-10, and were below the laboratory RDL in MW-08 and MW-11. For the May 11, 2005 sampling event, groundwater samples collected from the previously existing wells, MW-01 through MW-06, were generally consistent with historical analytical results from these wells. MW-01, MW-02, and MW-03 continue to be ND for all target analytes. Groundwater samples collected from MW-04 and MW-05 continue to contain both gasoline and non-gasoline related compounds, and groundwater impact in samples collected from MW-06 continues to be limited to MTBE (Figures 4-7). Groundwater impact beneath the Site appears to be influenced by the documented general northerly groundwater flow direction. Two separate groundwater plumes appear to be present beneath the Site; one consisting primarily of gasoline and other VOCs, including halogenated VOCs (HVOCs) with relatively well assessed southern and western limits, while a separate groundwater plume at the south of the property consists primarily of MTBE and appears to be moving in a northerly direction, down-gradient from the former southern USTs (Figure 4). Based on the results of the most recent groundwater sampling event at the Site, the groundwater impact appears to be generally assessed to the south, west, and northeast. Additional monitoring points would be necessary to the north of MW-07, northwest of MW-09, and east/southeast of MW-11 to fully characterize the extent of the groundwater plumes beneath the Site. It should be noted,

however, that additional monitoring points to the north/northwest of MW-07 and MW-09 may not be feasible due to the presence of College Avenue which is a very busy roadway. With respect to the MTBE plume, an additional monitoring point to the northwest of MW-09 may provide sufficient characterization data to warrant preparation of a Corrective Action Plan/Feasibility Study for the Site.

Based on the results of the recent CPT study, combined with previous CPT studies performed at the Site, the groundwater impact beneath the Site appears to be confined to the upper water-bearing zone and has not impacted the deeper aquifer.

Recommendations

SCS recommends continued quarterly monitoring and sampling of the existing groundwater monitoring wells MW-3 through MW-6 and the newly installed wells MW-7 through MW-11. Groundwater samples collected from MW-01, MW-02, and MW-03 have been below the laboratory RDL for all target analytes since August 2003, excluding minor concentrations of toluene detected in MW-01 and MW-02 during the initial sampling event in August 2003. SCS recommends either discontinuing monitoring and sampling of these wells, or placing them on an annual sampling schedule.

Attachments File No. 01203354.00

Figures

Figure 1: Site Location Map

Figure 2: Site Plan with Boring, Monitoring well and CPT Locations

Figure 3: Site Plan - Groundwater Elevations for 05/11/05

Figure 4: Isoconcentration Map – TPH-g in Groundwater for 05/11/05 Figure 5: Isoconcentration Map – MTBE in Groundwater for 05/11/05

Figure 6: Isoconcentration Map – Σ Gasoline Components (Excluding BTEX and MTBE) in

Groundwater for 05/11/05

Figure 7: Isoconcentration Map – Σ Non-Gasoline Components in Groundwater for 05/11/05

Diagrams and Tables

Key to Diagrams and Tables

Diagram A: TPH-g & Groundwater Elevation vs Time Diagram B: MTBE & Groundwater Elevation vs Time

Diagram C: ΣVOCs (Excluding TPH-g, BTEX, and MTBE) & Groundwater Elevation vs Time

Diagram D: ΣNon Gasoline-Related Compounds & Groundwater Elevation vs Time

Table 1: UST Excavation Sampling Results from 1986

Table 2A: UST Excavation Sampling Results from March 3, 1999

Table 2B: UST Excavation Sampling Results from March 3, 1999 – CAM 5 Metals

Table 3: Soil Boring Analytical Results – November 15, 1999

Table 4: Groundwater Boring Analytical Results – November 15, 1999

Table 5: Soil Boring Analytical Results – January 2001

Table 6: Groundwater Boring Analytical Results – January 2001

Table 7: Groundwater Boring Analytical Results Confirmation by 8260 – January 2001

Table 8: Soil Boring Analytical Results – 2003

Table 9: Groundwater Boring Analytical Results – 2003

Table 10: Soil Boring Analytical Results – Monitoring Wells – 2003

Table 11: Soil Boring Analytical Results – CPT – 2003

Table 12: Groundwater Boring Analytical Results – CPT – 2003 & 2005

Table 13: Groundwater Flow Direction and Gradient

Table 14: Groundwater Analytical Results

Appendices

Appendix A

Unified Soil Classification System Chart and Boring Log Legend

Boring Logs for MW-07 through MW-11 and B-129

DWR 188 Forms for MW-07 through MW-11

Appendix B

Well Completion Diagrams for MW-07 through MW-11

Appendix C

Analytical Sciences Report #5050303 dated May 12, 2005

Analytical Sciences Report #5050404 dated May 12, 2005

Analytical Sciences Report #5050605 dated May 12, 2005

Analytical Sciences Report #5051203 dated May 18, 2005

Appendix D

Gregg Drilling and Testing CPT Reports

Appendix E

Well Development Records for May 9, 2005 and May 10, 2005

Well Purge Records for May 11, 2005

Appendix F

Well Survey Report dated July 14, 2005

References File No. 01203354.00

Biocca, J., 2001. Telephone conversation between Mr. Biocca and Mr. Gary Johnson of SCS, April 3.

Malcolm Pirnie, Inc. (MP), 1999a. Phase I Environmental Site Assessment/Limited Compliance Assessment, October 1999.

MP, 1999b. Limited Phase II Environmental Site Assessment, December 13.

MRL, 1999. Certification of UST Cleaning and Removal, May 12.

NCRWQCB, 2000. Work Plan Directive, March 13.

NCRWQCB, 2004a, Work Plan Directive, January 5.

NCRWQCB, 2004b. Concurrence with proposed scope of work, September 16.

NCRWQCB, 2005. Personal communication between J. Tischler and K. Coker, February 11.

PNEG, 2000a. Untitled Document, 458 West College Avenue, Santa Rosa, California, January, 24.

PNEG, 2000b. Work Plan for Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, May 11.

PNEG, 2001a. Report on Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, April, 11.

PNEG, 2001b. Work Plan for Additional Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, August, 29.

PNEG, 2001c. Revised Work Plan for Additional Soil and Groundwater Investigation at A-1 Rentals, 458 West College Avenue, Santa Rosa, California, November, 19.

Former A-1 Rentals - File 01203354.00

Results of Additional Subsurface Investigation with 2nd Quarter 2005 Groundwater Monitoring and Sampling Event

- SCS, 2003a. Results of Additional Soil and Groundwater Investigation at Nations Rents, 458 West College Avenue, Santa Rosa, California, November 13.
- SCS, 2003b. Results of the 4th Quarter 2003 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, December 24.
- SCS, 2004a. Work Plan for Additional Subsurface Investigation, Nations Rents, 458 West College Avenue, Santa Rosa, California, February 26.
- SCS, 2004b. Results of the 1st Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, April 1.
- SCS, 2004c. Response to NCRWQCB verbal comments regarding modifications of the May 3, 2004 Work Plan for Additional Subsurface Investigation, Nations Rent Site, 458 West College Avenue, Santa Rosa, California, May 12.
- SCS, 2004d. Response to NCRWQCB verbal comments regarding modifications of the May 3, 2004 Work Plan for Additional Subsurface Investigation, Nations Rent Site, 458 West College Avenue, Santa Rosa, California, June 21.
- SCS, 2004e. Results of the 2nd Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, September 1.
- SCS, 2004f. Work Plan Addendum, Nations Rents, 458 West College Avenue, Santa Rosa, California, September 21.
- SCS, 2004g. Results of the 3rd Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, November 16.
- SCS, 2005. Results of the 4th Quarter 2004 Groundwater Monitoring and Sampling Event at Nations Rents, 458 West College Avenue, Santa Rosa, California, March 22.
- SRFD, 1986. UST removal permit applications for one 350-gallon 2-cycle fuel UST, one 1,000-gallon diesel UST, one 1,000-gallon gasoline UST.
- SRFD, 1993. Confirmation of removal of 6,000-gallon gasoline UST in 1986.
- Wheeler, A., 2001. Telephone conversation between Mr. Anthony Wheeler and Gary Johnson of SCS, December 27.

Distribution List File No. 01203354.00

Mr. Jim Biocca 9820 Brooks Road South Windsor, California 95492

Mr. David Phillips and Mrs. Dale Phillips 121 Mary-Paige Lane Santa Rosa, California 95404

Mr. Michael Miller Perry, Johnson, Anderson, Miller & Moskowitz 703 2nd Street, 4th Floor Santa Rosa, California 95404

SCS ENG	INEE	RS	SITE LOCATION MAP	APPROX. SCALE
3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 PH. (707) 548—9461 FAX (707) 544—5769			FORMER A-1 RENTALS	0 FT 900 FT FIGURE
PROJ. NO: 01203354.00	TAKEN BY:	FILE: _SiteLocMap	458 WEST COLLEGE AVE. SANTA ROSA, CA	1
DATE: 11/13/03	CREATED BY	APP. BY:		

			Gl	ROUNE	WATER	R FLOW L	EGEND	
	ed Groundwo Direction		t Contour ul = 1.0 ft)	ldentifier Tag	Date	Est. Flow Direction	Gradient Slope	→ MW−1 Monitoring Well Location [XX.XX] Groundwater Elevation
ldentifier Tag	Date	Est. Flow	Gradient Slope					
A	8/28/03	Direction Northerly	i = 0.01					NOTE: Ground water elevations are in feet above mean sea level (National
B	12/8/03	Northeasterly	i = 0.01					Geodetic Vertical Datum, 1929).
0	3/9/04	Northeasterly	i = 0.02					.
0	6/23/04	Northerly	i = 0.01					Cone Penetrometer TestBoring (CPT) Location
E	9/13/04	Northwesterly	i = 0.01					
F	1/6/05	NNE	i = 0.01					
<u> </u>	3/14/05	Northerly	i = 0.01					
								.
		GINE		SHEET TI			E PLAN	DIENT FOR 3/14/05 SCALE: 1" = 40'
3645 WEST	WIND BOULEVAR	L CONSULTA	ANIS	PROJECT				5.2 6 6, , 65
	546-9461 F	5403 AX. (707) 544-5769 AJH ACAD FILE: 3354.00)_CW C_3442	-			A-1 RENTALS OLLEGE AVENU	
	23/05 CHK. BY:	APP. BY: SK	, JII.U-J772			SANTA ROS	SA, CALIFORN	1A 2 0F 2

GROUNDWATER FLOW LEGEND Est. Flow Direction Gradient Contour Identifier Date Tag Gradient Direction Slope (Interval = n/a)MW-1Monitoring Well Location [XX.XX] Groundwater Elevation Identifier Est. Flow Gradient Date Tag Slope Direction NOTE: Ground water elevations are in (A) 8/28/03 Northerly i = 0.01feet above mean sea level (National Geodetic Vertical Datum, 1929). (B) 12/8/03 Northeasterly i = 0.01BORING LOCATION (C) 3/9/04 Northeasterly i = 0.02Cone Penetrometer Test (D) 6/23/04 Northerly i = 0.01Boring (CPT) Location (E) 9/13/04 Northwesterly i = 0.01ONE FORMER 1,000 GALLON GAS UST, REMOVED BY GENE FISH; 1986. 1 (F) 1/6/05 NNE i = 0.01(G) 3/14/05 Northerly ONE FORMER 1,000 GALLON DIESEL i = 0.01UST, REMOVED BY GENE FISH; 1986. 5/11/05 Variable Not Calculated ONE FORMER 1,0000 GALLON GAS UST, 3 REMOVED BY JIM BIOCCA; 1999. ONE FORMER 350 GALLON 2 CYCLE FUEL 4 UST, REMOVED BY GENE FISH; 1986. ONE FORMER 6,000 GALLON GAS UST, REMOVED BY GENE FISH; 1986. ONE FORMER 350 GALLON WASTE/OIL UST, REMOVED BY JIM BIOCCA; 1999. ONE FORMER 10,000 GALLON GAS UST, REMOVED BY NATIONS RENTS; 2004. ONE FORMER 10,000 GALLON DIESEL UST. REMOVED BY NATIONS RENTS; 2004. APPROXIMATE TANK LOCATIONS BASED ON HISTORICAL DATA; PHASE ONE ENVIRONMENTAL SITE ASSESSMENT, MALCOLM PIRNIE, INC 10/1999. LIMITED PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, MALCOLM PIRNIE, INC 12/1999 SHEET TITLE: ENGINE SCALE: SITE PLAN 1'' = 40'ENVIRONMENTAL CONSULTANTS GROUNDWATER ELEVATIONS FOR 5/11/05 3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 95403 PH. (707) 546–9461 FAX. (707) 544–5769 PROJECT TITLE: FORMER A-1 RENTALS FIGURE NO .: | DWN. BY: | ACAD FILE: | 3354.00-GW.no-3442 | CHK. BY: | APP. BY: | CK 458 W. COLLEGE AVENUE 3 3354.00 SANTA ROSA, CALIFORNIA 7/28/05 2 OF 2

Key to Diagrams and Tables 458 West College Avenue, Santa Rosa

TPH-g Total petroleum hydrocarbons in the gasoline range

TPH-d Total petroleum hydrocarbons in the diesel range

Benzene В

T Toluene

E Ethylbenzene

Xylenes X

Methyl tertiary butyl ether MTBE =

DIPE Di-isopropyl ether

ETBE Ethyl tert-butyl ether =

TAME Tert amyl-methyl ether

TBA Tert-butyl alcohol

5-Oxys 5 oxygenated fuel compounds (MTBE, DIPE, ETBE, TAME, TBA)

VOCs Volatile organic compounds

CB Chlorobezene

HVOCs Halogenated volatile organic compounds

Micrograms per liter μ g/L

Non detect ND

NA Not analyzed

Ethylene dichloride² EDC

Ethylene dibromide³ **EDB** =

Pb Scavs = Lead scavengers

² EDC has been referred to as 1,2-dichloroethane (1,2-DCA) in previous reports. ³ EDB has been referred to as 1,2-dibromoethane in previous reports.

Note: MW-01 through MW-03 and MW-06 have been non-detect for TPH-g since installation in August 2003.

SCS ENGINEERS	TPH-g & GROUNDWATER ELEVATION vs TIME	DIAGRAM
3645 WESTWIND BOULEVARD	Former A-1 Rentals	_
SANTA ROSA, CALIFORNIA	458 West College Avenue	A
PH: (707) 546-9461 FX: (707)544-5769	Santa Rosa, California	
Drawn By: KLC File Name: TPH-GW	Job Number: 01203354.00	DATE: 07/21/05

Note: MW-01, MW-02, and MW-03 have been non-detecct for MTBE since installation in August

SCS ENGINEERS	MTBE & Groundwater Elevation vs Time	DIAGRAM	
3645 WESTWIND BOULEVARD		Former A-1 Rentals	_
SANTA ROSA, CALIFORNIA		458 West College Avenue	B
PH: (707) 546-9461 FX: (707)544-5769		Santa Rosa, California	
Drawn By: KLC File Name:	MTBE-GW	Job Number: 01203354.00	DATE: 07/21/05

Note: Gaoline-related compounds only. MW-01 through MW-03 and MW-06 have been non-detect since installation in August 2003.

SCS ENGINEERS	ΣVOCs (Excluding TPH-g, BTEX and MTBE) & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BOULEVARD	Former A-1 Rentals	_
SANTA ROSA, CALIFORNIA	458 West College Avenue	C
PH: (707) 546-9461 FX: (707)544-5769	Santa Rosa, California	
Drawn By: KLC File Name: VOCs-GW	Job Number: 01203354.00	DATE: 07/21/05

Note: MW-01 through MW-03 and MW-06 have been non-detect since installation in August 2003.

SCS ENGINEERS	ΣNon Gasoline-Related Compounds & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BOULEVARD	Former A-1 Rentals	_
SANTA ROSA, CALIFORNIA	458 West College Avenue	D
PH: (707) 546-9461 FX: (707)544-5769	Santa Rosa, California	
Drawn By: KLC File Name: VOCs-GW	Job Number: 01203354.00	DATE: 07/21/05

Table 1: UST Excavation Sampling Results from 1986 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 1999)

Cample ID	Matrix	Data	TPH-g	TPH-d	В	Т	X				
Sample ID	Matrix	Date	mg/kg								
Soil/Gas UST Removal	Soil	02/04/86	120	NA	NA	NA	NA				
458 W. College	Soil	03/18/86	NA	ND	NA	NA	NA				
Center of Excavation	Soil	05/08/86	ND	NA	NA	NA	NA				
East End of Hole	Soil	12/19/86	ND	NA	ND	ND	ND				
West End of Hole	Soil	12/19/86	ND	NA	ND	ND	ND				
Sample ID	Matrix	Date			ug/L						
A-1 Rental	Water	01/20/86	68,000	NA	NA	NA	NA				
Water	Water	02/04/86	180	NA	NA	NA	NA				

Table 2A: UST Excavation Sampling Results from March 3, 1999 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 1999)

Sample ID	Matrix	TPH-g	TPH-d	В	T	E	X	MTBE	VOCs					
Sample ID	Matrix	mg/kg												
S2	Soil	ND	350	ND	ND	ND	ND	ND*	ND					
S4	Soil	ND	NA	ND	ND	ND	ND	ND*	NA					
S5	Soil	ND	NA	ND	ND	ND	ND	ND	NA					
P6	Soil	ND	NA	ND	ND	ND	ND	ND	NA					
D7	Soil	37	NA	0.72	1.6	0.65	4.1	6.9	NA					
Sample ID	Matrix				ug	/L								
W1	Water	ND	130	ND	ND	ND	ND	33*	ND					
W3	Water	ND	NA	0.88	ND	ND	ND	35*	NA					

Also ND for the other four ether-based oxygenates (diisopropyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, and tert butyl alcohol).

Table 2B: UST Excavation Sampling Results from March 3, 1999 - CAM 5 Metals 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 1999)

Sample ID	Matrix	Cadmium (Cd)	Chromium (Cr)	Lead (Pb)	Nickel (Ni)	Zinc (Zn)							
Sample 1D	Matrix	mg/kg											
S2	Soil	ND	57	10	103	46							
Sample ID	Matrix	ug/L											
W1	Water	ND	90	ND	ND	110							

Table 3: Soil Boring Analytical Results - November 15, 1999 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 1999)

Sample ID	Depth	TPH-g	TPH-d	В	T	E	X	MTBE	PAH	PCB						
Sample 1D	(feet)		mg/kg													
S-1	2-4	< 6.25	<25.1	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0125	ND	NA						
3-1	10-12	< 6.25	<25	< 0.0012	0.005	0.009	0.0248	< 0.0125	ND	NA						
S-2	15-17	< 6.05	<26.1	< 0.12	< 0.12	< 0.12	< 0.12	NA	NA	NA						
S-3	5-7	< 6.04	<20.9	< 0.12	< 0.12	< 0.12	< 0.12	NA	NA	NA						
3-3	10-12	< 5.65	<25	< 0.11	< 0.11	< 0.11	< 0.11	NA	NA	NA						
S-4	8-9	< 5.0	<20.1	NA	NA	NA	NA	NA	ND	ND						
3-4	15-17	< 5.0	< 20.0	NA	NA	NA	NA	NA	ND	ND						
S-5	4-6	NA	NA	< 0.12	< 0.12	< 0.12	< 0.12	< 0.124	ND	NA						
3-3	15-17	NA	NA	< 0.12	< 0.12	< 0.12	< 0.12	< 0.116	ND	NA						
S-7	4-6	< 5.81	<46.1	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0116	ND	NA						

Component of gasoline.

Table 3, Continued: Soil Boring Analytical Results - November 15, 1999 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 1999)

Sample ID	chloroform	t-butylbenzene	1,1 dichloroethene	n-butylbenzene	sec-butylbenzene	trichloroethene	isopropylbenzene	4-isopropyl toluene	naphthalene	전 자 n-propylbenzene	styrene	1,2,4 trimethyl benzene	1,3,5 trimethel benzene	i methylene chloride	Arsenic	Barium	Chromium	Lead	Selenium
0.1	0.0015	< 0.0012	0.0029	< 0.0012	< 0.0012	0.0541	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	3.804	215.264	126.775	4.056	<1.268
S-1	< 0.0012	0.0235	< 0.0012	0.0065	0.0165	< 0.0012	0.0045	0.0045	0.003	0.009	0.0028	0.002	0.0049	0.0095	3.199	219.242	107.53	4.675	<1.230
S-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.31	NA
S-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.9	NA
3-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.122	NA
S-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.541	NA
5-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.036	NA
S-7	ND	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	4.884	88.14	80.465	3.256	1.628

Table 4: Groundwater Boring Analytical Results - November 15, 1999 458 West College Avenue, Santa Rosa (Malcolm Pirnie, Inc., December 13, 1999)

Sample ID	трн-g	трн-а	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	PCB	isopropylbenzene	n-propylbenzene	Barium	Lead
						ug/L						
W-1	220	< 500	<1.0	<1.0	3.1	22.6	7.9	NA	1.2	3.2	167	< 3.0
W-2	<100	< 500	<1.0	<1.0	<1.0	<1.0	18.1	NA	NA	NA	NA	< 3.0
W-3	<100	< 526	<1.0	<1.0	<1.0	<1.0	24.8	NA	NA	NA	NA	< 3.0
W-4	<100	< 500	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA
W-5	31,700	2,370	21.2	1.9	55.9	38.1	16	NA	NA	NA	NA	<3.0
W-7	<100	<714	<1.0	<1.0	<1.0	<1.0	26.9	NA	ND	ND	<10	<3.0

^{*} Component of gasoline.

Table 5: Soil Boring Analytical Results - January 2001 458 West College Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	В	T	E	X	MTBE
Sample 1D	Sampled				mg/kg			
B-101-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-101-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-102-5'	01/25/01	ND	7.2	ND	ND	ND	ND	ND
B-102-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-102-15'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-103-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-103-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-104-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-104-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-105-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-105-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-105-15'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-106-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-106-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-106-15'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-107-5'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-107-10'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-107-15'	01/25/01	ND	ND	ND	ND	ND	ND	ND
B-108-10'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-108-5'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-108-15'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-108-20'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-109-5'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-109-10'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-110-5'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-110-10'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-110-15'	01/26/01	ND	ND	ND	ND	ND	ND	ND
B-111-5'	01/26/01	6.5	ND	ND	ND	ND	ND	ND
B-111-10'	01/26/01	28	ND	ND	ND	0.57	3.0	ND
B-111-15'	01/26/01	2.3	ND	ND	ND	0.008	0.60	ND
B-112-5'	01/26/01	56	68	ND	ND	ND	0.59	ND
B-112-10'	01/26/01	2.8	ND	0.039	ND	0.041	0.11	ND
B-113-5'	01/29/01	1.2	ND	ND	ND	ND	ND	ND
B-113-10'	01/29/01	ND	ND	ND	ND	ND	ND	ND
(Notes 1,2)								
B-113-15'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-114-5'	01/29/01	ND	ND	ND	ND	ND	ND 1.0	ND
B-114-10'	01/29/01	84 ND	ND	ND	ND	ND	1.0	ND
B-115-10'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-115-5'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-116-5'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-116-10'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-116-15'	01/29/01	ND	ND	ND	ND	ND	ND ND	ND
B-117-5'	01/29/01	ND	ND	ND	ND	ND	ND ND	ND
B-117-10'	01/29/01	ND	ND	ND	ND	ND	ND ND	ND
B-118-8'	01/29/01	ND	ND	ND	ND	ND	ND ND	ND
B-118-12'	01/29/01	ND	ND	ND	ND	ND	ND ND	ND
B-118-15'	01/29/01	ND	ND	ND	ND	ND	ND	ND
B-119-5'	01/30/01	ND	ND	ND	ND	ND	ND	ND

Table 5: Soil Boring Analytical Results - January 2001 458 West College Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	В	T	E	X	MTBE
Sample 1D	Sampled				mg/kg			
B-119-10'	01/30/01	12	7.7	ND	ND	ND	ND	ND
B-120-5'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-120-10'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-120-15'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-121-5'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-121-10'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-122-5'	01/30/01	ND	ND	ND	ND	ND	ND	ND
B-122-10'	01/30/01	ND	ND	ND	ND	ND	ND	ND

1 0.060 mg/kg CB. 2 0.0031 mg/kg MTBE.

Table 6: Groundwater Boring Analytical Results - January 2001 458 West College Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	В	Т	E	X	MTBE 8020	MTBE 8260
~ p	Sampled				ug	/L			0200
B-101-Water	01/25/01	ND	ND	ND	ND	ND	ND	16	37
B-102-Water	01/25/01	ND	ND	ND	ND	ND	ND	ND	NA
B-103-Water	01/25/01	1,900*	2,300	0.8	0.6	ND	44	ND	NA
B-104-Water	01/25/01	300*	1,100	ND	ND	ND	ND	ND	NA
B-105-Water	01/25/01	ND	ND	ND	ND	ND	ND	ND	NA
B-106-Water	01/25/01	ND	ND	ND	ND	ND	ND	ND	NA
B-107-Water	01/25/01	ND	ND	ND	ND	ND	ND	ND	NA
B-108-Water	01/26/01	ND	ND	ND	ND	ND	ND	ND	NA
B-109-Water	01/26/01	110	570	ND	ND	ND	19	ND	NA
B-110-Water	01/26/01	53	ND	ND	ND	ND	ND	7.0	5.7
B-111-Water	01/26/01	27,000*	ND	41	ND	470	ND	ND	NA
B-112-Water	01/26/01	8,700*	260	56	ND	100	37	140	NA
B-113-Water	01/29/01	4,100*	ND	7.7	ND	8.9	ND	10	NA
B-114-Water	01/29/01	1,400*	140	ND	ND	ND	34	2.7	ND
B-115-Water	01/29/01	600*	82	ND	ND	ND	ND	ND	ND
B-116-Water	01/29/01	110	ND	ND	ND	2.8	ND	25	32
B-117-Water	01/29/01	150	ND	ND	ND	ND	ND	ND	NA
B-118-Water	01/30/01	150	ND	ND	ND	ND	ND	ND	ND
B-119-Water	01/30/01	61,000*	20,000	ND	ND	ND	ND	ND	NA
B-120-Water	01/30/01	ND	ND	ND	ND	ND	ND	ND	NA
B-121-Water	01/30/01	ND	ND	ND	ND	ND	ND	3.6	6.0
B-122-Water	01/30/01	ND	ND	ND	ND	ND	ND	1.1	ND

This number is from peaks in the gasoline range. Peaks do not match the standard chromatogram.

Table 7: Groundwater Boring Analytical Results Confirmation by 8260 - January 2001 458 West College Avenue, Santa Rosa

Sample ID	Date	Benzene	CB	Ethylbenzene	Acetone	MTBE	Toluene
Sample 1D	Sampled			ug/L			
B-112-Water	01/26/01	52	510	89	37	96	ND
B-113-Water	01/29/01	ND	430	12	ND	11	11

Table 8: Soil Boring Analytical Results - 2003 458 West College Avenue, Santa Rosa

Sample ID	Date Sampled	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	chlorobenzene	1,3 dichlorobenzene	1,4 dichlorobenzene	1,2 dichlorobenzene	isopropyl benzene	n-propyl benzene	sec-butylbenzene	n-butylbenzene	tert-butylbenzene	naphthalene	1,2,4 trichlorobenzene
							-			n	1g/kg								-
B-123-5'	08/12/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-123-10'	08/12/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-123-15'	08/12/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-124-5'	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.075	0.004	0.031	0.093	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-124-10'**	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-124-15'	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	0.0029	0.038	0.003	0.012	0.038	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-125-5'	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-125-10'	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.007	< 0.002	0.004	0.008	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-125-15'	08/12/03	<1.0	< 5.0	< 0.002	< 0.002	0.003	< 0.002	< 0.002	0.19	0.032	0.14	0.48	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-126-5'	08/19/03	160	540	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.24	< 0.05	0.11	< 0.05	0.33*	0.22*	0.75*	2.2*	< 0.05	< 0.05	< 0.05
B-126-10'	08/19/03	90	50	< 0.05	< 0.05	0.26	< 0.05	< 0.05	0.5	< 0.05	< 0.05	< 0.05	0.42*	1.8*	0.27*	0.94*	0.18*	0.83*	< 0.05
B-126-15'	08/19/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.006	0.015	0.059	0.23	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.005
B-127-5'	08/19/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.005	0.0076	1.8	0.024	0.14	0.026	< 0.005	< 0.005	0.0039(1)	< 0.005	0.0055(1)	< 0.005	< 0.005
B-127-10'	08/19/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	0.0035	0.31	0.014	0.084	0.2	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Table 8: Soil Boring Analytical Results - 2003 458 West College Avenue, Santa Rosa

Sample ID	Date Sampled	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	chlorobenzene	1,3 dichlorobenzene	1,4 dichlorobenzene	1,2 dichlorobenzene	isopropyl benzene	n-propyl benzene	sec-butylbenzene	n-butylbenzene	tert-butylbenzene	naphthalene	1,2,4 trichlorobenzene
							-			n	1g/kg								
B-127-15'	08/19/03	<1.0	< 5.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
B-128-5'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-128-10'***	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-128-15'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-13R-5'	08/19/03	NA	NA	0.007	< 0.005	< 0.005	< 0.005	0.0079	2.6	0.035	0.19	0.13	0.0067*	0.0052*	0.0074*	< 0.005	0.0079 *	< 0.005	< 0.005
B-13R-15'	08/19/03	NA	NA	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.009	< 0.005	0.004	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
B-129-15.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-129-20.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ND for all other Oxys

* Component of gasoline.

** Sample also contained 5.0 mg/kg lead. *** Sample also contained 6.0 mg/kg lead.

-1 Component of gasoline.

Table 9: Groundwater Boring Analytical Results - 2003 458 West College Avenue, Santa Rosa

Sample ID	Date Sampled	трн-8	р-нат	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	chlorobenzene	1,3 dichlorobenzene	1,4 dichlorobenzene	1,2 dichlorobenzene	tert-butylbenzene	1,2,4 trichlorobenzene	1,2,4 trimethylbenzene
								ug	g/L						
B-123	08/12/03	<10,000	840*	< 50	< 50	< 50	< 50	< 50	170	< 50	86	340	< 50	< 50	< 50
B-124	08/12/03	<10,000	1,100*	< 50	< 50	< 50	< 50	11	1,500	83	330	1,200	5.6(1)	< 50	< 50
B-125	08/12/03	<10,000	5,600*	19	< 50	33	< 50	11	2,500	290	1,400	4,600	< 50	14	16
B-126	08/12/03	<2,500	12,000	<100	<100	<100	<100	<100	120	720	2,400	9,800	<100	370	<100
B-127	08/19/03	< 50	< 50	<10	<10	<10	<10	<10	59	<10	<10	<10	<10	<10	<10
B-128	08/19/03	610**	560*	< 50	< 50	< 50	< 50	< 50	530	< 50	120	310	< 50	< 50	< 50
B-129	05/02/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	1.9	NA	NA	NA	NA	NA	NA	NA

^{*} The sample chromatogram does not exhibit a chromatographic pattern characteristic of diesel.

Chromatographic peaks known to be chlorinated hydrocarbons were not included in the calculation of the TPH-gasoline result.

(1) Component of gasoline

Table 10: Soil Boring Analytical Results - Monitoring Wells - 2003 458 West College Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	В	T	E	X	MTBE
Sample 1D	Sampled				mg/kg			
MW-01-5'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-01-10'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-01-15'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-02-5'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-02-10'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-02-15'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-03-5.5'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-03-10'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-03-15'	08/18/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-04-5.5'	08/19/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-04-10'	08/19/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-04-15'	08/19/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-05-5'	08/21/03	4.6	410*	0.058	0.025	0.039	0.072	< 0.025
MW-05-10'	08/21/03	4.5	< 5.0	0.05	0.012	0.11	0.062	< 0.025
MW-05-15'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-06-5'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	0.031	< 0.025
MW-06-10'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-06-15'	08/21/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-07-5.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-07-10.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-07-15.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-08-5.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-08-10.5	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-08-16.0	05/02/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-09-5.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-09-10.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-09-15.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-10-5.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-10-10.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-10-15.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-11-6.0	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-11-10.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025
MW-11-20.5	05/03/05	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025

*

The sample chromatogram does not exhibit a characteristic pattern for diesel. Higher boiling point constituents of gasoline or a petroleum solvent such as paint thinner appears to be present.

Table 11: Soil Boring Analytical Results - CPT - 2003 458 West College Avenue, Santa Rosa

Sample ID	Date Sampled	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	isopropyl benzene	n-propyl benzene	sec-butylbenzene	n-butylbenzene	1,2 dichlorobenzene	1,4 dichlorobenzene	chlorobenzene	1,3,5 trimethylbenzene	tert-butylbenzene	p-isopropyltoleune	naphthalene
										mg	/kg								
CPTB-02-5'	8/21/2003	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CPTB-02-10'	8/21/2003	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CPTB-02-15'	8/21/2003	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.015	< 0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CPTB-03-5'	8/19/2003	42	53	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.077*	0.26*	0.14 *	0.14*	< 0.05	0.12	0.63	< 0.05	< 0.05	< 0.05	< 0.05
CPTB-03-10'	8/19/2003	96	86	< 0.05	< 0.05	0.38	< 0.05	< 0.05	0.43*	1.8*	0.23*	1.0*	< 0.05	< 0.05	0.5	0.071*	0.17*	0.087*	0.89
CPTB-03-15'	8/19/2003	<1.0	< 5.0	< 0.002	0.002	< 0.002	0.0027	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

^{*} Component of gasoline.

Table 12: Groundwater Boring Analytical Results - CPT - 2003 & 2005 458 West College Avenue, Santa Rosa

Sample ID	Date Sampled	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	chlorobenzene	1,2 dichlorobenzene
						ug/L				
CPTB-01A-60'	08/18/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPTB-02-40.7'	08/18/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPTB-03A-61.8'	08/19/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	1.9	1.6
CPTB-04-45'	08/19/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0
CPT-05@31.0	05/04/05	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPT-05@40.0	05/04/05	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPT-06@40.0	05/04/05	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPT-07@40.0	05/04/05	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CPT-07A@40.0	05/04/05	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

The sample chromatogram does not exhibit a chromatographic pattern characteristic of diesel.

** Chromatographic peaks known to be chlorinated hydrocarbons were not included in the calculation of the

Table 13: Groundwater Flow Direction and Gradient 458 West College Avenue, Santa Rosa

Well #	Date	Top of Casing Elevation (ft. > msl)	Depth to Groundwater (ft.)	Water Level Elevation (ft. > msl)	Groundwater Flow Direction & Gradient (i)
MW-01		135.93	6.33	129.60	
MW-02		136.19	7.35	128.84	
MW-03	08/28/03*	135.62	8.92	126.70	Northerly
MW-04	08/28/03	135.10	8.65	126.45	i = 0.01
MW-05		135.23	7.10	128.13	
MW-06		135.37	7.14	128.23	
MW-01		135.93	7.19	128.74	
MW-02		136.19	7.18	129.01	
MW-03	12/08/03	135.62	6.05	129.57	Northwesterly
MW-04	12/08/03	135.10	7.85	127.25	i = 0.01
MW-05		135.23	6.61	128.62	
MW-06		135.37	6.97	128.40	
MW-01		135.93	5.70	130.23	
MW-02		136.19	6.54	129.65	
MW-03	03/09/04	135.62	6.41	129.21	Northeasterly
MW-04	03/09/04	135.10	7.78	127.32	i = 0.02
MW-05		135.23	6.06	129.17	
MW-06		135.37	5.39	129.98	
MW-01		135.93	8.52	127.41	
MW-02		136.19	9.70	126.49	
MW-03	06/23/04	135.62	10.10	125.52	Northerly
MW-04	00/23/04	135.10	9.58	125.52	i = 0.01
MW-05		135.23	8.92	126.31	
MW-06		135.37	9.05	126.32	
MW-01	-	135.93	9.47	126.46	
MW-02		136.19	10.51	125.68	
MW-03	09/13/04	135.62	11.11	124.51	Northwesterly
MW-04	09/13/04	135.10	9.50	125.60	i = 0.01
MW-05		135.23	9.51	125.72	
MW-06		135.37	9.81	125.56	

Table 13: Groundwater Flow Direction and Gradient 458 West College Avenue, Santa Rosa

Well #	Date	Top of Casing Elevation (ft. > msl)	Depth to Groundwater (ft.)	Water Level Elevation (ft. > msl)	Groundwater Flow Direction & Gradient (i)
MW-01		135.93	4.62	131.31	
MW-02		136.19	5.19	131.00	
MW-03	01/06/05	135.62	4.92	130.70	Northerly
MW-04	01/00/03	135.10	6.72	128.38	i = 0.01
MW-05		135.23	4.79	130.44	
MW-06		135.37	4.40	130.97	
MW-01		135.93	5.55	130.38	
MW-02		136.19	6.54	129.65	
MW-03	03/14/05	135.62	6.73	128.89	Northerly
MW-04	03/14/03	135.10	7.91	127.19	i = 0.01
MW-05		135.23	6.02	129.21	
MW-06		135.37	5.53	129.84	
MW-01		135.93	5.83	130.10	
MW-02		136.19	6.14	130.05	
MW-03		135.62	5.73	129.89	
MW-04		135.10	7.63	127.47	
MW-05		135.23	5.57	129.66	
MW-06	05/11/05**	135.37	5.61	129.76	Inconclusive
MW-07		137.34	7.45	129.89	
MW-08		137.90	8.41	129.49	
MW-09		137.42	7.12	130.30	
MW-10		137.97	7.60	130.37	
MW-11		138.21	6.72	131.49	

^{*} Surveyed to msl on September 2, 2003 under the direction of a licensed land surveyor.

^{**} MW-07 through MW-11 were surveyed to msl on July 6, 2005 under the direction of a licensed land surveyor.

Table 14: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	ine Co	mpon	ents						N	lon-Ga	asoline	Comp	ponent	ts
ID	Date	TPH-g	Р-НАТ	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
	08/28/03	< 50	< 50	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-01	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
111 // 01	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	< 50	< 50	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-02	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/13/04	<50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	<50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	<50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Table 14: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	ine Co	mpon	ents						N	Non-G	asoline	e Com	ponen	ts
ID	Date	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
	08/28/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/08/03	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0
	03/09/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-03	06/23/04	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,00	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/06/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	300	150*	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	1.6	<1.0	<1.0	<1.0	<1.0
	12/08/03	270	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	3.5	<1.0	<1.0	<1.0	<1.0
	03/09/04	180	100*	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<1.0	1.0	<1.0	<1.0	<1.0	<1.0
MW-04	06/23/04	220	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	12	<1.0	1.0	<1.0	<1.0
141 44 -04	09/13/04	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<1.0	<1.0
	01/06/05	93	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	440	NA	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	3.3	<1.0	<1.0	1.6	<1.0	<1.0	<1.0	3.1	<1.0	3.3	<1.0	<1.0	<1.0	<1.0
	05/11/05	360	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	3.0	<1.0	3.1	<1.0	<1.0	<1.0	<1.0

Table 14: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	ine Co	mpon	ents						N	Non-G	asoline	e Comj	ponent	ts
ID	Date	TPH-g	LPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
	08/28/03	830	260*	4.1	1.4	9.1	21.3	<1.0	6.6	3.0	4.7	2.8	<1.0	8.4	13	3.7	2.4	<1.0	1.0	18	78	5.3	2.2
	12/08/03	2,400	460*	< 5.0	< 5.0	96	96	< 5.0	< 5.0	11	48	25	11	120	75	17	8.1	<1.0	< 5.0	< 5.0	5.2	< 5.0	< 5.0
	03/09/04	900	220*	1.0	<1.0	47	26.3	<1.0	<1.0	5.7	18	16	45	<1.0	35	3.1	4.2	<1.0	1.2	1.2	3.7	<1.0	<1.0
MW-05	06/23/04	1,200	180*	18	<1.0	37	22	<1.0	<1.0	2.0	12	5.7	18	<1.0	8.9	1.3	2.6	<1.0	11	14	65	4.0	<1.0
1,17,7 03	09/13/04	630	NA	15	< 0.5	7.0	1.8	<1.0	2.3	1.1	5.5	<1.0	9.0	<1.0	3.0	<1.0	3.4	<1.0	37	22	74	6.7	<1.0
	01/06/05	3,100	NA	2.4	<1.0	210	34.6	<1.0	2.4	13	66	330	160	<1.0	17	11	11	1.0	7.2	1.9	7.1	<1.0	<1.0
	03/14/05	830	NA	<1.0	<1.0	23	18.6	<1.0	<1.0	2.9	9.8	3.3	2.6	22	30	2.9	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	05/11/05	310	NA	<1.0	<1.0	16	8.0	<1.0	<1.0	2.3	8.4	3.5	1.9	17	13	1.1	2.3	<1.0	1.0	<1.0	<1.0	<1.0	<1.0
	08/28/03	< 50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	5.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0
	12/08/03	<50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	<50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	28	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-06	06/23/04 09/13/04	<50 <50	<50 NA	<1.0 <0.5	<1.0 <0.5	<0.5	<1.0 <1.5	<1.0	8.5	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
	01/06/05	<50 <50	NA NA	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	8.3 11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/14/05	<50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/05	<50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	9.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0

Table 14: Groundwater Analytical Results 458 West College Avenue, Santa Rosa

									Gasol	line Co	mpon	ents						N	lon-Ga	asoline	Comp	onent	:s
ID	Date	TPH-g	P-HdL	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-dichloroethane	Methyl tert butyl ether	sec-butylbenzene	isopropylbenzene	naphthalene	n-butylbenzene	n-propylbenzene	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	tert-butylbenzene	p-isopropyltoluene	chlorobenzene	1, 4-dichlorobenzene	1,2-dichlorobenzene	1, 3 dichlorobenzene	1,2,4 trichlorobenzene
												μg/I											
MW-07	05/11/05	220	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	10	<1.0	<1.0	<1.0	<1.0
MW-08	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-09	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	28	13	40	2.5	<1.0
MW-10	05/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	90	5.0	8.0	<1.0	<1.0
MW-11	05/11/05	330	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Note: All samples to date have been ND for analytes not listed in Table 15.

^{*} The sample chromatogram does not exhibit a characteristic pattern of diesel. Higher boiling points of weathered gasoline are present.

Appendix A

Unified Soil Classification System Chart and Boring Log Legend Boring Logs for MW-07 through MW-11 and B-129 DWR 188 forms for MW-07 through MW-11

GENER	RAL SOIL CAT	EGORIES	-	BOLS	TYPICAL SOIL TYPES
		Clean Gravel	X	GW	Well Graded Gravels, Gravel - Sand mixtures
o,	Gravel More than half of	with little or no fines		GP	Poorly Graded Gravels, Gravel - Sand mixtures
OARSE GRAINED SOILS More than half is larger than no. 200 sieve	coarse fraction is larger than No. 4 sieve size	Gravel with more than		GM	Silty Gravels, Poorly Graded; Gravel - Sand - Silt Mixtures
GRAINED an half is I oo. 200 sie		12% fines		GC	Clayey Gravels, Poorly Graded; Gravel - Sand - Clay Mixtures
ARSE GR ore than I than no.	Sand	Clean Sand with little or	0.00	SW	Well Graded Sands, Gravelly Sands
COARSE More th	More than half of coarse fraction is	no fines		SP	Poorly Graded Sands, Gravelly Sands
S	smaller than No. 4 sieve size	Sand with more than		SM	Silty Sands, Poorly Graded; Sand - Silt Mixtures
		12% fines		SC	Clayey Sands, Poorly Graded; Sand - Clay Mixtures
0	Silt and Clay			ML	Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity
SOILS s smaller sieve	Liquid Limit Less			CL	Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays
	uiaii 50 %			OL	Organic Silts and Organic Silty Clays of Low Plasticity
GRA nan h no.	Silt and Clay		Щ	МН	Inorganic Silts, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silts
FINE More th	Liquid Limit Greater than 50%			СН	Inorganic Clays of High Plasticity, Fat Clays
_	triair 50 %			ОН	Organic Clays of Medium to High Plasticity
	Highly Organic So	ils	1/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PT	Peat and Other Highly Organic Soils
	Bedrock			BR	Bedrock
	Aggregate Base			В	Mixed Fill
	Asphalt		3	Α	Asphalt
	Concrete			С	Concrete
	nple submitted for chen	•	CMS SPT CBS GRA	= Stand	Modified Split Spoon dard Penetration Test

SCS ENGINEERS

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

UNIFIED SOIL CLASSIFICATION SYSTEM CHART and BORING LOG LEGEND

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00 Figure

Appendix A A-1 1 of 1

Da	ate (s	start, er	nd):	5/2	/05 - \$	5/2/0	5			Bor	ring I	No.	Bor	ing L	ocation:	
	_	Time (- 13:0	30		M۱	W-(07				
		d By:	-										See	Uni	fied Soil Classification System (USCS)	
		ed By:		-											nd and information not noted.	
	-	Contra Name					rilling								stalled: Y⊠ N□ if no, boring backfilled with:	
		Metho					Aug								nt ☐ Bentonite: Cement ☐ Grout ☐ Chip	ວຣ ∟
	-	ng Met											Aı	uger	Depth, ft: 21.0 Total Depth, ft: 21.5	
	amm otes:	er weig	ht / fa	all:_	140 lb	s / 30) inch	1								
INC	nes.															
	red															
	Inches Recovered	.⊑	ype	els			ion	tion	eet	bc						
<u>e</u>	s Re		Sampler Type	Water Levels	PID (ppm)		Discoloration	Elevation	Depth in Feet	Graphic Log	%	%		%	Lithologic Description and Drilling Comments:	
Sample	che	Blows / 6	amp	/ater	<u>a</u>	Odor	isco		epth	raph	Gravel %	Sand %	Silt %	Clay 9		
S	=	В	S	>	Ф	0		137.9		O O	9	S	S	O	ASPHALT: over base rock.	
								137.6-		No.						
								136.9-	1-						CLAY (CL): greenish gray, minor very fine grained	
									-						sand, moist.	
									2-							
									3-							
									J-							
									4-							
								133.5-	Ċ.	7,7,9					Increased sand content. CLAY with Sand (CL): dark gray, very fine to fine	
					0				5-		_	4.5		00	grained sand, minor fine gravel, moist.	
X	6	3	SS							- ////,	5	15	20	60		
	6	3 5	CMSS						6-	<u> </u>	5	15	20	60		
	6	5							-	1///	3	13	20	00		
									7-	1///						
						No	No	130.4-	-						SANDY SILT (ML): brown, very fine to fine grained	
									8-						sand, moist.	
\times									9-							
					0				10-							
X	6	6	SS					127.5-				30	60	10	SILTY SAND (SM): brown, fine grained sand, moist.	
	6	7	CMSS						11-			50	40	10	CIET I CAND (CIM): STOWN, THIS GRAINES CAND, THORES	
X	0	11	-					126.6-	-			85	10	5	SAND with Silt (SP-SM): brown, fine to medium	
									12-	- 1					grained sand.	
				Ā				125.4-	-						SAND with Gravel (SP): brown, fine to coarse graine	
									13-	-					sand and fine gravel, wet.	
									14-							
	S	C S	E	N	GΙ	N	ΕE	R S		BC)RI	NC	3 I	\overline{O}	6 MW-07	
									•	Forr					Figure:	
		onment Westw								458					Appendix A	A
		a Rosa,					L E 70.	^		San	ta R	losa	, Čal	iforr	ia 95401 MW-07	
į l	rn.:	707-546	o-946	T F	ax: /0	7-544	1-5/6	9		Job	Nur	npei	r: U1	203	354.00 1 of 2	

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Appendix A MW-07 2 of 2

Dr Lo	illing gged	start, er Time (d By: ed By:	start, Step	enc hen	l) 13 Knütt	3:50 · tel		30			ring I		See	e Uni	ocation: fied Soil Classification System (USCS) nd and information not noted.	
Dr Dr Sa Ha	iller's illing ampli	Contra Name Metho ing Met er weig	e: <u>Ric</u> d: <u>8-i</u> thod:	k So n Ho CM	chneic ollow- ISS	der Stem	Aug	er					C	emer	stalled: Y⊠ N□ if no, boring backfilled with: at □ Bentonite: Cement □ Grout □ Chip Depth, ft: 21.0 Total Depth, ft: 21.5	os 🗆
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments: ASPHALT: (several layers) over base rock.	
								137.6-	1- 2- 3-						CLAY (CL): dark gray, minor very fine grained sand, moist.	
×	6 6	2 2 2	CMSS		0				4- 5- 6-		5 5 5	5 5 5	40 40 40	50 50 50	Brown. Dark gray to black.	
07/18/05						No	No	129.7-	7- - 8- - 9-						SILTY SAND (SM): brown, fine grained sand, minor clay, moist, trace fine gravel.	
ACON.:GD	6 6	3 5 10	CMSS	Σ	0			125.7-	10- 11- 12-	-	T	50 40 60	40 40 30	10 20 10	GRAVEL with Sand (GP): brown, fine to coarse	
SCS-SANTA KOSA BOKING LUG UTZUSSS4.00.GFJ SCS-SANTA	6	6.6			<u> </u>			D. G.	13- - 14- -			NIC		0.0	grained sand and fine gravel, minor silt and clay, wet.	
טט אטטא או וואס-טטט	Envii 3645 Sant	ronment Westwa Rosa, 707-546	tal Co vind B Calif	onsul Boule Fornia	tants vard 9540	03		R S		Fori 458 San	mer W. Ita R	A-1 Colle	Ren ege , Cal	tals Ave. liforn	Figure: Appendix A MW-08 1 of 2	Α

Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
	0 6 6	10 18 35	CMSS		0				16- 17-		50 50	40 40	5 5	5 5	
						No	No	119.2-	- 18- - 19-						SILTY SAND (SM): brown, fine grained sand, minor medium grained sand, to fine gravel, wet.
	6 6	3 6 11	CMSS		0		V	- 116.7-	20- 21- 22-		5 T T	60 55 55	35 40 40	T 5 5	TOTAL DEPTH = 21.5 FEET
									23- 23- 24-						
									25- - 26-						
									27- - 28-						
ROSA.GDT 07/18/05									29- 30- -						
.00.GPJ SCS-SANTA									31- 32- - 33-						
SA BORING LOG 01203354,00.GPJ SCS-SANTA ROSA.GDT 07/18/05	S	C S	E	N.	G L	N.	3 5	R S	34-	BC)RI	NG	3 1 (O.G	G MW-08

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00 Figure:

Appendix A MW-08 2 of 2

Da	te (s	tart, er	nd):	5/3	/05 -	5/3/0	5			Во	ring I	No.	Bor	ing L	ocation:	
	_	Time (d By:			•		- 10:4	40		M	W-(9				
		а Бу. ed Ву:	-												fied Soil Classification System (USC nd and information not noted.	SS)
Dri	lling	Contra	actor:	Cle	ar He	art D	rilling	g, Inc.					M	W In	stalled: Y⊠ N□ if no, boring ba	ckfilled with:
		Name Metho					Λιια						C	emer	nt Bentonite: Cement G	rout Chips
		ng Met				Sterri	Aug	EI					Αı	uger	Depth, ft: 21.0 Total Depth,	ft: 21.5
		er weig	jht / fa	all:_	140 lb	s / 30) incl	1								
NO	tes:															
	ered															
ı	Inches Recovered	ü	Sampler Type	Water Levels	(L		Discoloration	Elevation	Depth in Feet	Log	\ \o					
Sample	hes F	Blows / 6 in	mpler	ter Le	PID (ppm)	, 5	color	Ele	oth in	Graphic Log	Gravel %	Sand %	%	y %	Lithologic Description and Drilling	Comments:
Sar	nc nc	Blo	Sar	Wa	PIC	Odor	Dis	137.9	Del	Gre	Gr	Sar	Silt	Clay	4000447	
						1	1	137.5-		-					ASPHALT: over base rock.	
								136.9-	1-						CLAY (CL): greenish black, moist.	
									2-							
									3-							
										1//						
									4-						Dark brown, minor very fine to fine	grained sand.
			-		0				5-		_	_	25	60	Grayish black, minor fine gravel.	
X	3	3 4	CMSS							1//	5 T	5	35	50	Grayish black, million line graver.	
X	6	7	S						6-		Т	10	40	50		
,									7-							
						No	No No			-						
								129.9-	8-						GRAVELLY CLAY (CL): olive gray mo	
															fine gravel, minor fine to coarse grained	d sand, moist.
									9-							
		0	-		0				10-		30	20	20	30		
\wedge	6	8 13	CMSS								30	20	10	40		
X	6	14	ပ်						11-		30	20	20	30		
									12-							
										- (1)						
								124.9-	13-						GRAVEL with Silt and Sand (GW-GN	
				\Box					14						coarse gravel, fine to coarse grained sa	and, wet.
				_					14							
		C C		NI	<u> </u>			D.C.		DC		NIC			NAMA 00	
						N	3	R S							6 MW-09	Figure:
		onment Westw								Fori 458	mer W.					Appendix A
		a Rosa, 707-546					-576	g		San	ıta R	osa,	, Cal	iforn	iia 95401 354.00	MW-09
۱ '	11	01-040	J-3 4 0	ı F	an. /U	,-044	-5/0	J		JOD	INUÍ	incl	. U	203	JJ4.00	1 of 2

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Appendix A MW-09 2 of 2

Dri Lo	illing gged	tart, er Time (d By: ed By:	start, Step	end hen	l) 11 Knütt	:10 - el		20			ring f		See	e Uni	ocation: fied Soil Classification System (USCS) nd and information not noted.
Dri Dri Sa Ha	iller's illing mpli	Contra Name Metho ng Met er weig	: <u>Ric</u> d: <u>8-i</u> :hod:	k So n Ho CM	chneid ollow-S ISS	ler Stem	Aug	er					C	emer	stalled: Y⊠ N□ if no, boring backfilled with: nt □ Bentonite: Cement □ Grout □ Chips Depth, ft: <u>21.0</u> Total Depth, ft: <u>21.5</u>
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	- Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
							•	138.0- 137.4-	1- 2- 3- 4-						ASPHALT: over base rock. CLAY (CL): greenish gray, moist.
×	1 6 6	2 3 4	CMSS		0	No	No	129.9-	5- 6- 7- 8-		5 5	10	35 35	50 50	Dark gray, minor fine to medium grained sand and fine gravel.
	6 6	12 18 20	CMSS		0			127.9-	9- 10- 11- 12-		30 50 50	15 20 20	15 20 20	40 10 10	GRAVELLY CLAY (CL): dark gray to greenish gray, fine gravel, fine to coarse grained sand, moist to wet. GRAVEL with Silt and Sand (GW-GM): brown to greenish gray, fine and coarse gravel, fine to coarse grained sand, moist to wet.
	Envir 3645 Santa	C S onment Westwa Rosa, 707-546	tal Co /ind B Calif	onsul Soule Fornia	tants vard 9540)3		R S	13-	Forr 458 San	ner W. (ta R	A-1 Colle	Ren ege , Cal	tals Ave. iforn	Figure: Appendix A MW-10 354.00 Appendix A MW-10 1 of 2

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Appendix A MW-10 2 of 2

	-	start, er	-								ring I		Bor	ng L	ocation:	
	_	Time (d By:			-		- 15:4	45		M۱	W-′	11	See	l Ini	fied Soil Classification System (USCS)	
		ed By:	-												nd and information not noted.	
		Contra					rilling	g, Inc.							stalled: Y \boxtimes N \square if no, boring backfilled wit	
		s Name Metho					Aug	er							nt ☐ Bentonite: Cement ☐ Grout ☐ C	-
	-	ing Met				- / 00) : I	_					Αι	ıger	Depth, ft: 21.0 Total Depth, ft: 21.	5
	mm tes:	er weig	INT / T	all:_	140 ID	S / 3() incr	1								
	vered		e e	S				L.	#							
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comment	s:
Sa	<u>n</u>	Ä	Sa	Ň	₫	8	Ä	138.5 138.2-	De De	Ö	ъ	S	S	ਠੱ	ASPHALT: over base rock.	
								137.7-	1-						CLAY (CL): dark gray, minor very fine grained san moist.	d,
									2-						IIIOISt.	
									3-							
									3-							
								134.5-	4-	 					CLAY with Sand (CL): dark gray, very fine to fine grained sand, trace fine gravel, moist.	
X	0	2	(0						5-							
X	5	2	CMSS		0				6-		T	20	30	50 50		
	0	4							- 7-		•	20				
						No	No									
									8-							
								129.5-	9-	•					SAND with Gravel (SP): dark gray, fine to mediur grained sand and fine gravel, wet.	
$\overline{}$	0	7							10-						g	
	6	7	CMSS						11-		30	60	5	5		
<u> </u>	6	10	-						-		30	60	5	5		
									12-							
									13-							
									14-							
_	6	C C	_	NI	<u> </u>	N		D.C.		DC		NIC		00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
						N	E E	R S							6 MW-11	
3	3645	ronment Westw a Rosa,	ind E	Boule	vard	าว				Forr 458	W.	Colle	ege.	Ave.	Appendia 95401 MW-	
		a Rosa, 707-546					-576	9							354.00 1 of:	

BORING LOG MW-11

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Appendix A MW-11 2 of 2

Appendix B

Well Completion Diagrams for MW-07 through MW-11

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403

Ph.: 707-546-9461 Fax: 707-544-5769

Former A-1 Rentals 458 W. College Ave. Santa Rosa, California 95401 Job Number: 01203354.00

Figure:

Appendix C

Analytical Sciences Report #5050303 dated May 12, 2005 Analytical Sciences Report #5050404 dated May 12, 2005 Analytical Sciences Report #5050605 dated May 12, 2005 Analytical Sciences Report #5051203 dated May 18, 2005

Report Date: May 12, 2005

Stephen Knüttel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Nation's Rent 01203354.00

Lab Project Number: 5050303

This 11 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128 110 Liberty Street Petaluma, CA 94952 Fax: (707) 769-8093

TPH Gasoline in Water

Lab # 29546	Sample ID B-129@W	Analy TPH/Gase		Result (ug/L)	RDL (ug/L) 50
Date Sampled: Date Received:	05/02/05 05/03/05	Date Analyzed: Method:	05/06/05 EPA 5030/8015M		atch #:5504

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29546	B-129@W	benzene		ND	1.0
	2 120011	toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
Oxygenated Gasoline Additives					
			tert-butyl alcohol (TBA)		25
		methyl tert-butyl eth	ner (MTBE)	1.9	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromoflu	oromethane (20)	20.5	103	70 -	- 130
Toluene-d ₈	(20)	20.1	101	70 -	- 130
4-bromoflu	orobenzene (20)	19.6 98.0		70 -	- 130
Date Samp Date Receiv		· —	5/05 8260B	QC Batch #:	_5499

TPH Gasoline & MBTEX in Soil

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29547	B-129@15.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29548	B-129@20.5'	TPH/Gasoline	ND	1.0
	_	MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29549	MW-07@5.5'	TPH/Gasoline	ND	1.0
	_	MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29550	MW-07@10.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29551	MW-07@15.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29552	MW-08@5.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29553	MW-08@10.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	0.025	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	0.023	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29554	MW-08@16.0'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/02/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/03/05
 Method:
 EPA 8015M/8020

Total Lead in Soil

Lab # 29552	Sample ID MW-08@5.5	_	lysis b)	Result (mg/kg) 4.4	RDL (mg/kg) 3.0
Date Sampled: Date Received: Method:	05/02/05 05/03/05 EPA 3050/6010	Date Digested: Date Analyzed:	05/05/05 05/05/05	QC Ba	tch #: <u>5497</u>

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5504 **Lab Project #:** 5050303

Sample ID	Compound	Result
<u> </u>	Compound	(ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
29537	CMS	TPH/Gas		NS	
	CMS	Benzene	9.49	0.100	94.9
	CMS	Toluene	9.62	0.100	96.2
	CMS	Ethyl Benzene	9.32	0.100	93.2
	CMS	Xylenes	28.4	0.300	94.6

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
29537	CMSD	TPH/Gas		NS		
	CMSD	Benzene	9.45	0.100	94.5	0.43
	CMSD	Toluene	9.51	0.100	95.1	1.1
	CMSD	Ethyl Benzene	9.32	0.100	93.2	0.03
	CMSD	Xylenes	28.4	0.300	94.6	0.03

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5499 **Lab Project #:** 5050303

Result (ug/L)
ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.6	103	70 – 130
toluene-d ₈ (20)	21.0	105	70 – 130
4-bromofluorobenzene (20)	20.0	100	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
29450	CMS	1,1-dichloroethene	18.2	25.0	72.8
	CMS	benzene	23.4	25.0	93.6
	CMS	trichloroethene	20.8	25.0	83.2
	CMS	toluene	23.5	25.0	94.0
	CMS	chlorobenzene	23.6	25.0	94.4

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	20.0	100	70 – 130
4-bromofluorobenzene (20)	20.0	100	70 – 130

Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
CMSD CMSD CMSD CMSD	1,1-dichloroethene benzene trichloroethene toluene	18.8 24.6 21.9 25.2	25.0 25.0 25.0 25.0	75.2 98.4 87.6 101	3.2 5.0 4.7 7.0 5.8
	CMSD CMSD CMSD CMSD	CMSD 1,1-dichloroethene CMSD benzene CMSD trichloroethene CMSD toluene	IDCompound Name(ug/L)CMSD1,1-dichloroethene18.8CMSDbenzene24.6CMSDtrichloroethene21.9CMSDtoluene25.2	ID Compound Name (ug/L) Level CMSD 1,1-dichloroethene 18.8 25.0 CMSD benzene 24.6 25.0 CMSD trichloroethene 21.9 25.0 CMSD toluene 25.2 25.0	ID Compound Name (ug/L) Level Recv. CMSD 1,1-dichloroethene 18.8 25.0 75.2 CMSD benzene 24.6 25.0 98.4 CMSD trichloroethene 21.9 25.0 87.6 CMSD toluene 25.2 25.0 101

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	21.2	106	70 – 130
toluene-d ₈ (20)	21.0	105	70 – 130
4-bromofluorobenzene (20)	19.9	99.5	70 – 130

 $\label{eq:mb} \begin{aligned} \text{MB} = \text{Method Blank}; \ \ \text{LCS} = \text{Laboratory Control Sample}; \ \ \text{CMS} = \text{Client Matrix Spike}; \ \ \text{CMSD} = \text{Client Matrix Spike} \ \ \text{Duplicate} \\ \text{NS} = \text{Not Spiked}; \ \ \text{OR} = \text{Over Calibration Range}; \ \ \text{NR} = \text{No Recovery} \end{aligned}$

QC Batch #: 5514 **Lab Project #:** 5050303

Sample ID	Compound	Result (mg/kg)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(mg/kg)	Level	Recv.
29577	CMS	TPH/Gas		NS	
	CMS	Benzene	0.092	10.0	92.0
	CMS	Toluene	0.093	10.0	93.5
	CMS	Ethyl Benzene	0.096	10.0	96.0
	CMS	Xylenes	0.293	30.0	97.8

	Sample		Result	Spike	%	
Sample #	ID	Compound	(mg/kg)	Level	Recv.	RPD
29577	CMSD	TPH/Gas		NS		
	CMSD	Benzene	0.093	10.0	92.8	0.86
	CMSD	Toluene	0.095	10.0	94.6	1.2
	CMSD	Ethyl Benzene	0.097	10.0	97.3	1.4
	CMSD	Xylenes	0.297	30.0	99.0	1.2

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5497 **Lab Project #:** 5050303

Sample ID	Compound	Result (mg/kg)			
MB	Lead (Pb)	ND			
Sample ID	Compound	Result (mg/kg)	Spike Level	% Recv.	
LCS	Lead (Pb)	26.2	25.0	105	
Sample ID	Compound	Result (mg/kg)	Spike Level	% Recv.	RPD

26.1

25.0

104

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

LCSD

Lab Project #: 5050303

Lead (Pb)

0.38

CHAIN OF CUSTODY LAB PROJECT NUMBER: SKS SOS OS OS

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

	CLIENT INFORMATION	ORMAT	NO.			BILLIA	NO.	BILLING INFORMATION	TANA	3		SC	SCS ENGINEERS PROJECT NAME:	FFRS F	231.09	NAME	ے	1	1	-
[3				T			2			3	Ī	0					4	7	OLALDIN 5 KG	two.
3	COMPANY NAME: SCS ENGINEERS	NGINEERS				CONTAC	7 ;	CONTACT: ME J'M BIOCLE	810 C	4		250	SCS ENGINEERS PROJECT NUMBER:	RS PRO	JECT N	UMBER		(D)	20325U	8
	ADDRESS: 3645 WESTWIND BOULE	FSTWIND	BOULE	VARD	COMP	COMPANY NAME:	E 75	Former A	7 /-	A-1 RENTOLS	~	7	TURNAROUND TIME (check one)	SOUN	D TIM	E (che	ck on	9	GEOTRACKER EDF:	7
	SANTA	SANTA ROSA, CA 9540	9540	3		Address:	s: 98%		BROOKS	80	5	Mobi	MOBILE LAB						GLOBAL ID:	
	CONTACT: 178	JTEPHEN	Krus	B			3	20 80010	2	9549	761	SA	SAME DAY		ı	24 Hours	RS		COOLER TEMPERATURE	90
	PHONE#: (707) 546-9461	46-9461				PHONE#						84	48 Hours		1	72 Hours	<u>ڇ</u>			į
	Fax #: (707) 544-5769	44-5769				FAX #:						'n	5 DAYS			NORMAL	₹	Į,		
													l				1		3	
L												ANAL YSIS	SIS					Г	PAGE OF	
ITEM	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV.	EBTM 8016M/8020	TPH DIESEL / MOTOR OIL EPA 8015M	VOLATILE HYDROCARBONS EPA 8260 (FULL LIST)	EPA 8260 Full List + Oxy / Fuel Additives	EPA SCAVENGERS COXYGENATED TUEL ADDITIVES	EPA 8260M CHLORINATED SOLVENTS	SEMI-VOLATILE HYDROCARBONS EPA 8270	DOT \ H98T M1.814 A93 \ 70238 M	PESTICIDES / PCB'S EPA 8081 / 8141 / 8082	VATAM 11 MAD SLATAM THUL 3	TOTAL LEAD	<u> </u>	COMMENTS	LAB SAMPLE *
-	B-129@ W	2/max/2 09/2	09%	mar	h		X				×	├-	-	s			T	+	TO DHAT	19541
7	6-129 e 15.5"	ת	0925	S., L	1		\times				-	-	<u> </u>				-	3	Water aster	2007
۳	B-129¢ 20.5'	п	5460	Sole	-		X				-	-	-			T	+	÷ ţ	tot Cuerty	105 4C
4	NW-070 5.51	<i>y</i>	0.50	2,45	~		X					_						4	Pur retrainder.	
တ	MW-07@10.5'		1105	So/c			X					_					\vdash	-		796
٥	MW-070 15.51	٠	1/20	ع/و2	_		×									T		\vdash		
۲	MW-08@ 5.51	3	1418	7/05	7		X										×			2955
•	MW-08 @ 10,51	7	1430	50, L	-		8										}			295.53
6	MW-08@ 16.0'	7	9541	29/5	`		Ŋ						_			-			,	
9																	<u> </u>	<u> </u>		2
ŧ												Н					-			
								ľ	SIGNA	SIGNATURES	5									
REL	RELINQUISHED BY: HELT	X	R		DATE::	V/2/2	ν	TIME:	7.01	Ş					Ì		l			
REC	RECEIVED BY:			- 	DATE::	1			. I	,	RECI	EIVED B	RECEIVED BY LABORATORY:	RATOR					-	
RELI	RELINQUISHED BY:			— 	DATE::			TIME:					ل	Ż		9		y	5/2/28	06:01
REC	RECEIVED BY:			- 	DATE:			TIME:			SIGNATURE	 ≝ }						, 1 =) I

Report Date: May 12, 2005

Stephen Knüttel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Nations Rent 01203354.00

Lab Project Number: 5050404

This 5 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

TPH Gasoline & MBTEX in Soil

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29596	MW-09@ 5.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29597	MW-09@10.5'	TPH/Gasoline	ND	1.0
	_	MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29598	MW-09@15.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29599	MW-10@5.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29600	MW-10@10.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29601	MW-10@15.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29602	MW-11@6.0'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015
		-		

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29603	MW-11@10.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #: __5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
29605	MW-11@20.5'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 05/03/05
 Date Analyzed:
 05/09/05
 QC Batch #:
 5514

 Date Received:
 05/04/05
 Method:
 EPA 8015M/8020

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5514 **Lab Project #:** 5050404

Sample		Result
ID	Compound	(mg/kg)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(mg/kg)	Level	Recv.
29537	CMS	TPH/Gas		NS	
	CMS	Benzene	0.092	0.100	92.0
	CMS	Toluene	0.093	0.100	93.5
	CMS	Ethyl Benzene	0.096	0.100	96.0
	CMS	Xylenes	0.293	0.300	97.8

	Sample		Result	Spike	%	
Sample #	ID	Compound	(mg/kg)	Level	Recv.	RPD
29537	CMSD	TPH/Gas		NS		
	CMSD	Benzene	0.093	0.100	92.8	0.86
	CMSD	Toluene	0.095	0.100	94.6	1.2
	CMSD	Ethyl Benzene	0.097	0.100	97.3	1.4
	CMSD	Xylenes	0.297	0.300	99.0	1.2

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

CHAIN OF CUSTODY

SCS ENGINEERS PROJECT NAME:

BILLING INFORMATION

CLIENT INFORMATION

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

Ŝ	COMPANY NAME: SCS ENGINEERS	S ENGIN	EERS	gi v			CONTACT: MR. J.	A.F.	1	181	B10 cc3	4	SSS	SCS ENGINEERS PROJECT NUMBER:	ERS P	SOJECT	NOMBE	ای	0	10335U-C	β
	ADDRESS: 3645 WESTWIND BOULEVARD	15 WEST	WIND B	OULEVA	윤	COMP	COMPANY NAME:	100	tounen	1-4	RENTARS	See.		TURNAROUND	ROU		TIME (check one)	eck o	one)	GEOTRACKER EDF: 4X	N XX
	SA	SANTA ROSA, CA 95403	A, CA	95403			ADDRESS:		9820 (3 Ress	BROOKS (20 S	50	₩ W	MOBILE LAB		1				GLOBAL ID:	
	CONTACT: STED ME	Es Me	`	MUTRE	1			Ž	Achoson.		3	95492	Š	SAME DAY			24 Hours	OURS		COOLER TEMPERATURE	
	PHONE#: (707) 546-9461	7) 546-9	<u></u>	•			PHONE#:						4	48 Hours			72 Hours	JURS 1		့	
	FAX #: (70	(707) 544-5769	1769				FAX #:						7	5 DAYS			NO	NORMAL	X	202	
					an market								ANALYSIS	YSIS						PAGE OF	
ПЕМ	CLIENT SAMPLE 1.D.		DATE	1	A mx	#CONT.	PRESV. YESINO	X3T6/8AS/H4T 8 MTBE EPA 8015M/8020	\ JE\$EIL H9T JIO ROTOM M8108 A93 B IITA IOV	VOLATILE HYDROCARBONS HYDROCARBONS HYDROCARBONS	EPEX & OXYGENATES + Oxy / Fuel Additives	+ PB SCAVENGERS EPA 8260B OXYGENATED	FUEL ADDITIVES EPA 8260M CHLORINATED	SOLVENTS SEMI-VOLATILE HYDROCARBONS	0728 A93 00T \ H99T	EERTICIDES BCB.2 EERTICIDES BCB.8 2W 99251 8141 8085	CAM 17 METALS / 5 LUFT METALS	GABL LEAD		COMMENTS	LAB SAMPLE #
-	10-09 e 5.5		3414705 (0908	3.61)	78.98	X						2				N. C.			295 K
7	11-09 @ 10,5°)1	-51 60	z	/		X													t856C
m	MW-09 @ 15,5'	1.20	7 4	0925	z	7		X													39898
4	MW-10 @ S	5.5	,,	1120	7	-		X								_					39529
ıç.	MW-10 @ 10.5	ند	, ,	1/35	⊌,	-		X					-	\dashv	\dashv	_				-	23600
g	AW-10 G 1.	75'51	2	1 48	,	-	, care	X					1	\dashv		-	_	_			1095
7	mu-11 @ 6	6.0	" [1400	7	-		X		,											70960
80	MU-11 60 10	10.51) ,	0141	z	- 4		X					\dashv			\dashv	_				29603
6	mw-11 @ 16,	16,0') "	1730	1,	ر ا		X	(क्यम)										1	ANDESTE ONLY IF	MESCH.
5	A 11. WA	20.5'	۲ /	1445	*	1		X										_		ABOUE	39605
£													ᅦ	_	-	4					0
								3		SIGN	SIGNATURES	Si									
Æ	RELINQUISHED BY:	th	R	B		DATE::	DATE:: 4 107	4	TIME:	TIME: ///5	الم										
Æ	RECEIVED BY:					DATE::			TIME:			æ	ECEINEI	RECEIVED BY LABORATORY:	BORAT	ORY:	1)
A.	RELINQUISHED BY:					DATE::			TIME:			İ		1	7	4				Y May or	0:
Æ	Received BY:					DATE:			TIME:			Sic	SIGNATURE		ب_					ДАТЕ	Time

Report Date: May 12, 2005

Stephen Knüttel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Nations Rent 01203354.00

Lab Project Number: 5050605

This 13 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128 110 Liberty Street Petaluma, CA 94952 Fax: (707) 769-8093

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29654	CPT-05@	dichlorodifluoromethane	ND (1)	1.0
	31.0'	chloromethane	ND	1.0
	U 1.0	vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29654	CPT-05@	isopropyl benzene		ND	1.0
	31.0'	1,2,3-trichloropropa	ne	ND	1.0
	••	bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TBA) methyl tert-butyl ether (MTBE)		ND	25
				ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	(ETBE)	ND	1.0
		tert-amyl methyl ether (TAME)		ND	1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈	uoromethane (20) (20) uorobenzene (20)	20.4 19.8 19.5	102 99.0 97.5	70 – 1 70 – 1 70 – 1	30
Date Samp		Date Analyzed: 05/0 Method: EPA	9/05 8260B	QC Batch #:	5509

⁽¹⁾ The following additional compound was tentatively identified and quantitatively estimated: 2,4-dimethyl-3-pentanone (5.5 ug/L).

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29655	CPT-05	dichlorodifluoromethane	ND	1.0
	40.0'	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29655	CPT-05	isopropyl benzene		ND	1.0
	40.0'	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D	DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl ether (TAME)		ND	1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈	oromethane (20) (20) uorobenzene (20)	20.2 20.0 19.6	101 100 98.0	70 – 1 70 – 1 70 – 1	30
Date Samp Date Recei		Date Analyzed: 05/0 Method: EPA	9/05 8260B	QC Batch #: _	5509

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29656	CPT-06	dichlorodifluoromethane	ND	1.0
	40.0'	chloromethane	ND	1.0
	1010	vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29656	CPT-06	isopropyl benzene		ND	1.0
	40.0'	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene	•	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene	•	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TBA)		ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether	•	ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	20.0	100	70 – 1	30
toluene-d ₈		19.9	99.5	70 – 1	
4-bromoflu	orobenzene (20)	19.3	96.5	70 – 1	30
Date Sample		Date Analyzed: 05/0 Method: EPA	9/05 8260B	QC Batch #: _ !	5509

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29657	CPT-07	dichlorodifluoromethane	ND (2)	1.0
	40.0'	chloromethane	ND	1.0
	1010	vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29657	CPT-07	isopropyl benzene		ND	1.0
	40.0'	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TBA) methyl tert-butyl ether (MTBE)		ND	25
				ND	1.0
			di-isopropyl ether (DIPE)		1.0
		ethyl tert-butyl ether	-	ND	1.0
		tert-amyl methyl ether (TAME)		ND	1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance I	Range (%)
toluene-d ₈	oromethane (20) (20) uorobenzene (20)	20.1 19.9 19.4	101 99.5 97.0	70 – 1 70 – 1 70 – 1	30
Date Samp Date Recei		Date Analyzed: 05/0 Method: EPA	9/05 8260B	QC Batch #: _	5509

⁽²⁾ The following additional compound was tentatively identified and quantitatively estimated: 2,4-dimethyl-3-pentanone (3.3 ug/L).

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29658	CPT-07A	dichlorodifluoromethane	ND (3)	1.0
	40.0'	chloromethane	ND	1.0
	1010	vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29658	CPT-07A	isopropyl benzene		ND	1.0
	40.0'	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
	hexachlorobutadiene		ND	1.0	
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	tert-amyl methyl ether (TAME)		1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈	oromethane (20) (20) uorobenzene (20)	20.8 20.0 19.8	104 100 99.0	70 – 1 70 – 1 70 – 1	30
Date Samp Date Recei		Date Analyzed: 05/0 Method: EPA	9/05 8260B	QC Batch #: _	5509

⁽³⁾ The following additional compound was tentatively identified and quantitatively estimated: 2,4-dimethyl-3-pentanone (3.6 ug/L).

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5509 **Lab Project #:** 5050605

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	19.8	99.0	70 – 130
toluene-d ₈ (20)	19.8	99.0	70 – 130
4-bromofluorobenzene (20)	19.9	99.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
29537	CMS	1,1-dichloroethene	21.0	25.0	84.0
	CMS	benzene	23.2	25.0	92.8
	CMS	trichloroethene	22.7	25.0	90.8
	CMS	toluene	23.3	25.0	93.2
	CMS	chlorobenzene	23.3	25.0	93.2

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.5	97.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
29537	CMSD	1,1-dichloroethene	21.0	25.0	84.0	0.0
	CMSD	benzene	23.4	25.0	93.6	0.86
	CMSD	trichloroethene	23.0	25.0	92.0	1.3
	CMSD	toluene	23.4	25.0	93.6	0.43
	CMSD	chlorobenzene	23.4	25.0	93.6	0.43

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.1	101	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.6	98.0	70 – 130

 $\label{eq:mb} \begin{subarray}{ll} MB = Method Blank; \ LCS = Laboratory \ Control \ Sample; \ CMS = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ Duplicate \ NS = Not \ Spiked; \ OR = Over \ Calibration \ Range; \ NR = No \ Recovery \end{subarray}$

CHAIN OF CUSTODY LAB PROJECT NUMBER: 50 50 605

Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128

5 Don't	54	GEOTRACKER EDF:	Ö	COOLER TEMPERATURE		د	;	of	COMMENTS SAMPLE	73/15	1 00 X	25750	79652	98°980									7.5
ECT NAME: NOT 1 010 5	01303		GLOBAL ID:	24 Hours Coole	72 Hours	NORMAL		PAGE	CAM 17 METALS / 5 LUFT METALS TOTAL LEAD														- 1
SCS ENGINEERS PROJECT NAME:	SCS ENGINEERS PROJECT NUMBER:	TURNAROUND TIME (check one)	MOBILE LAB	SAME DAY	48 Hours	5 DAYS		ANALYSIS	EPA 8084 / 8141 / 8082 BESTICIDES / PCB'S BERN-VOLATILE TRAH / TOG CHLORINATED SOLVENTS SOLVENTS CHLORINATED CHLORINATED CHLORINATED CHLORINATED CHLORINATED	1_												RECEINED BY PABORATORY:	
BILLING INFORMATION	CONTACT: MR J.M 818614	~	ADDRESS: 9820 BLOOKS ROS	JINDSOL CA 95492	PHONE#:	FAX#			CON. FRANCE CONT. A MISS. A MISS. A MISS. B MISS. B MISS. A MISS. B MISS. A MISS. A MISS. B MISS. A	× .	×	× ×	8	X							SIGNATURES	5437 OC TIME: 1445	1
CLIENT INFORMATION	COMPANY NAME: SCS ENGINEERS	ADDRESS: 3645 WESTWIND BOULEVARD	SANTA ROSA, CA 95403	CONTACT: STEVINE - HUTTL	PHONE#: (707) 546-9461	Fax#: (707) 544-5769			DATE DATE MATRDC.	1 Cft-05@31.0' YME 1000 WAR	2 COT-05 @ 40.5' 10#5 [3 CP 5-06 & 40.0 1400	4 CPT-07@40.0 4 1450 V	5 CMT-079C40.5 6 1445 6	9	7	60	6	10	11		RELINQUISHED BY: My My M. R. RECENED BY: Payn Philos	719

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: May 18, 2005

Stephen Knüttel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Nations Rent 01203354.00

Lab Project Number: 5051203

This 27 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

TPH Gasoline in Water

Lab #	Sample ID	Analysis	Result (ug/l	L) RDL (ug/L)
29768	MW-01	TPH/Gasoline	ND	50
29769	MW-02	TPH/Gasoline	ND	50
29770	MW-03	TPH/Gasoline	ND	50
29771	MW-04	TPH/Gasoline	360	50
29772	MW-05	TPH/Gasoline	310	50
29773	MW-06	TPH/Gasoline	ND	50
29774	MW-07	TPH/Gasoline	220	50
29775	MW-08	TPH/Gasoline	ND	50
29776	MW-09	TPH/Gasoline	ND (1)	50
29777	MW-10	TPH/Gasoline	ND (1)	50
29778	MW-11	TPH/Gasoline	330	50
Date Sampled: Date Received:	05/11/05 05/12/05	Date Analyzed: 05/12/05 Method: EPA 5030/8	B015M	QC Batch #: _5529

(1) Chlorobenzene and dichlorobenzenes were not included in the TPH gasoline quantitation.

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29768	MW-01	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29768	MW-01	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene 1,2,4-trichlorobenzene naphthalene		ND	1.0
				ND	1.0
				ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	-	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	rrogates	Result (ug/L) % Recovery Acceptance Ra		Range (%)	
toluene-d ₈	oromethane (20) (20) orobenzene (20)	20.5 103 70 – 130 20.3 102 70 – 130 19.4 97.0 70 – 130		30	
Date Sampl Date Receiv		Date Analyzed: 05/12/05 Method: EPA 8260B		QC Batch #: _	5526

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29769	MW-02	dichlorodifluoromethane	ND	1.0
	02	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29769	MW-02	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene	!	ND	1.0
		1,2-dichlorobenzene	!	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surro	ogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈ (20	omethane (20) 0) obenzene (20)	20.4 102 70 – 130 20.1 101 70 – 130 19.6 98.0 70 – 130		30	
Date Sampled Date Received		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #:	5526

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29770	MW-03	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29770	MW-03	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene	!	ND	1.0
		1,2-dichlorobenzene	!	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surr	ogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈ (2	omethane (20) (0) obenzene (20)	20.5 103 70 – 130 20.1 101 70 – 130 19.5 97.5 70 – 130		30	
Date Sampled Date Received		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #:	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29771	MW-04	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	3.1	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29771	MW-04	isopropyl benzene		ND	1.0
	-	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		3.0	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		3.1	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		1.4	1.0
		1,2,4-trichlorobenzene		ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether	•	ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	ırrogates	Result (ug/L) % Recovery Acceptance Ra		Range (%)	
toluene-d ₈	oromethane (20) (20) orobenzene (20)	20.2 20.0 19.9	101 100 99.5	0 70 – 130	
Date Samp Date Receiv		Date Analyzed: 05/12/05 Method: EPA 8260B		QC Batch #:	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29772	MW-05	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	1.0	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	16	1.0
		m,p-xylene	7.0	1.0
		styrene	ND	1.0
		o-xylene	1.0	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29772	MW-05	isopropyl benzene		8.4	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		17	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	1.1	1.0
		tert-butylbenzene		2.3	1.0
		1,2,4-trimethylbenze	ene	13	1.0
		sec-butylbenzene		2.3	1.0
		1,3-dichlorobenzene	9	ND	1.0
		1,4-dichlorobenzene	9	ND	1.0
		1,2-dichlorobenzene	9	ND	1.0
		p-isopropyltoluene n-butylbenzene 1,2,4-trichlorobenzene		ND	1.0
				1.9	1.0
				ND	1.0
		naphthalene		3.5	1.0
		hexachlorobutadien	ie	ND	1.0
		1,2,3-trichlorobenze	ene	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth		ND	1.0
		di-isopropyl ether (ND	1.0
		ethyl tert-butyl ethe	-	ND	1.0
		tert-amyl methyl eth		ND	1.0
Su	irrogates	Result (ug/L)	% Recovery	Acceptance	Range (%)
dibromoflu	oromethane (20)	20.7	104	70 – 130	
toluene-d ₈	(20)	20.2 101		70 – 1	30
4-bromoflu	orobenzene (20)	20.2	101	70 – 1	30
Date Samp			2/05, 05/13/05 x 8260B	QC Batch #: _	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29773	MW-06	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29773	MW-06	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	9.8	1.0
		di-isopropyl ether (D	IPE)	ND	1.0
		ethyl tert-butyl ether	(ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	ırrogates	Result (ug/L) % Recovery Acceptance		Acceptance F	Range (%)
toluene-d ₈	oromethane (20) (20) lorobenzene (20)	20.6 103 70 – 13 20.2 101 70 – 13 19.5 97.5 70 – 13		30	
Date Samp Date Receiv		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #:	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29774	MW-07	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	10	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29774	MW-07	isopropyl benzene		ND	1.0
	_	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		2.0	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		1.1	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenzene		ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	irrogates	Result (ug/L) % Recovery		Acceptance F	Range (%)
toluene-d ₈	oromethane (20) (20) orobenzene (20)	20.4 102 70 20.1 101 70		70 – 1 70 – 1 70 – 1	30
Date Samp Date Receiv		Date Analyzed: 05/12/05 Method: EPA 8260B		QC Batch #: _	5526

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29775	MW-08	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29775	MW-08	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene	•	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene 1,2,4-trichlorobenzene		ND	1.0
				ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surr	ogates	Result (ug/L) % Recovery		Acceptance F	Range (%)
toluene-d ₈ (2	omethane (20) 0) obenzene (20)	20.5 103 20.1 101 19.7 98.5		70 – 1 70 – 1 70 – 1	30
Date Sampled Date Received		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #:	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29776	MW-09	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	28	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29776	MW-09	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	2.5	1.0
		1,4-dichlorobenzene)	13	1.0
		1,2-dichlorobenzene	•	40	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenzene		ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	ner (MTBE)	12	1.0
		di-isopropyl ether (D	DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	rrogates	Result (ug/L) % Recovery		Acceptance	Range (%)
dibromofluo	oromethane (20)	20.7 104		70 – 1	30
toluene-d ₈ (20.2 101		70 – 1	
4-bromoflue	orobenzene (20)	19.5	97.5	70 – 1	30
Date Sampl Date Receiv		Date Analyzed: 05/1 Method: EPA	2/05 . 8260B	QC Batch #: _	5526

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29777	MW-10	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	90	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29777	MW-10	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		1.2	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene	•	ND	1.0
		1,4-dichlorobenzene		5.0	1.0
		1,2-dichlorobenzene		8.0	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		1.5	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance	Range (%)
	promethane (20)	20.6 103		70 –	
toluene-d ₈		19.9 99.5		70 – 7	
4-bromotlu	orobenzene (20)	19.4	97.0	70 – 1	130
Date Sampl Date Receiv		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #:	5526

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29778	MW-11	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29778 MW-11		isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		3.4	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene	ND	1.0	
		1,2-dichlorobenzene		ND	1.0
		p-isopropyltoluene n-butylbenzene		ND	1.0
				ND	1.0
		1,2,4-trichlorobenzene		ND	1.0
		naphthalene hexachlorobutadiene		ND	1.0
				ND	1.0
		1,2,3-trichlorobenze	ND	1.0	
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sı	ırrogates	Result (ug/L) % Recovery		Acceptance R	ange (%)
toluene-d ₈	oromethane (20) (20) Jorobenzene (20)	20.5 103 20.2 101 20.2 101		70 – 1: 70 – 1: 70 – 1:	30
Date Samp		Date Analyzed: 05/1 Method: EPA	2/05 8260B	QC Batch #: _ <u>{</u>	5526

LABORATORY QUALITY ASSURANCE REPORT

Sample		Result
ID	Compound	(ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
29760	CMS	TPH/Gas		NS	
	CMS	Benzene	10.4	10.0	104
	CMS	Toluene	10.6	10.0	106
	CMS	Ethyl Benzene	11.1	10.0	111
	CMS	Xylenes	32.5	30.0	108

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
29760	CMSD	TPH/Gas		NS		
	CMSD	Benzene	10.1	10.0	101	2.5
	CMSD	Toluene	10.3	10.0	103	3.1
	CMSD	Ethyl Benzene	10.8	10.0	108	2.0
	CMSD	Xylenes	31.9	30.0	106	1.8

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	19.9	99.5	70 – 130
4-bromofluorobenzene (20)	19.6	98.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
29753	CMS	1,1-dichloroethene	20.0	25.0	80.0
	CMS	benzene	22.8	25.0	91.2
	CMS	trichloroethene	22.2	25.0	88.8
	CMS	toluene	23.3	25.0	93.2
	CMS	chlorobenzene	24.0	25.0	96.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.7	104	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.6	98.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
29753	CMSD	1,1-dichloroethene	20.0	25.0	80.0	0.0
	CMSD	benzene	22.8	25.0	91.2	0.0
	CMSD	trichloroethene	22.2	25.0	88.8	0.0
	CMSD	toluene	23.3	25.0	93.2	0.0
	CMSD	chlorobenzene	23.8	25.0	95.2	0.84

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.6	103	70 – 130
toluene-d ₈ (20)	19.9	99.5	70 – 130
4-bromofluorobenzene (20)	19.4	97.0	70 – 130

 $\label{eq:mb} \begin{subarray}{ll} MB = Method Blank; \ LCS = Laboratory \ Control \ Sample; \ CMS = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ Duplicate \ NS = Not \ Spiked; \ OR = Over \ Calibration \ Range; \ NR = No \ Recovery \end{subarray}$

CHAIN OF CUSTODY LAB PROJECT NUMBER: 5051203

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336**
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Appendix E

Well Development Records for May 9, and 10, 2005 Well Purge Records for May 10, and 11, 2005

SCS ENG	ΙN	E	E R	S	WELL DEVEL	WELL NUMBER MW-07	
PROJECT					JOB NUMBER	SITE	RECORDED BY
Form	er A-1	Ren	tals		01203354.00	458 W. College Ave.	Amy Yardley
PROJECT LOCATION					AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
458 W. College A	ve. San	ıta F	Rosa, C	California	77 ° F	clear	None
METHOD				DEVELOPMENT CF	RITERIA		
HAND PUMP (HP)				Minimum of stabilized.	f 4 well volumes or un	til discharge is clear and water	r characteristics have
SUBMERSIBLE	X			REMARKS			
PUMP (SP) ————	7.				interface probe used t	eter Limit Exceeded	
BAILER (B)	*7			(>999 NTU's	s).		
SURGE BLOCK (SB)	X			-			
				. 1.4	1	PURGE VOLUME CALCULAT	ION
HOLE DIAMETER	d_H	=	8.0	→ d _w		CASING VOLUME =	
WELL CASING					GROUND SURFACE (S)	$V_{c} = \pi \left(\frac{d_{W}ID}{2} \right)^{2} (TD_{c} - H) = 3$	2.14/0.17 ² (20.7.70)
INSIDE DIAM	d _w ID	=	2.0	↑ ↑ ™ -0.53 h	MEJ	$V_{c} - \pi \left(\frac{1}{2} \right) \left(1D_{c} - H \right) - \frac{1}{2}$	(20.7 - 7.9)
OUTSIDE DIAM	d _w OD		2.5	-0.55 ii		= 0.28 ft ³	
00.0.222	ω _W • Δ			<u> </u>		FILTER PACK PORE VOLUME :	_
DEPTH TO:					<u> </u>		
WATER LEVEL	h	=	7.34	H	TD _s	$V_F = \pi \left[\left(\frac{d_H}{2} \right)^2 - \left(\frac{d_WOD}{2} \right)^2 \right]$	(TD_s - (S or H)*)(P)
BASE OF SEAL	S	=	4.0		.	= 1.01 ft ³	
BASE OF SCREEN	0	=	20.7		SCREEN TD _C	= 1.01 π	
BASE OF SUMP	TD_C	=	20.7		INTERVAL	TOTAL MELL VOLUME	
EOTIMATED EIL TED					∄ 	TOTAL WELL VOLUME =	2
ESTIMATED FILTER PACK POROSITY	Р	=	0.25	<u>∵∵</u>	<u> </u>	$V_T = V_C + V_F = 1.29 \text{ ft}^3 \text{ x } 7$.48 gal/ft ³ = 9.7 gal
Diameters in (inches) : Denthe	in (foot)			, u _H	'	(* If C > LL 1100 C: If C > LL 1100 LL)	

(* If S > H, use S; If S < H, use H)

Diameters in (inches) : Depths in (feet)

	DEVEL	OPME	NT LOG			CUMULATIVE TOTAL REMOVED WATER CHARACTERISTICS						COMMENTS
DATE	TIN BEGIN	FINISH	- METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
05/10/05	09:00	09:03	SP	3	3	0.31	6.65	0.335	*MLE	17.4	2.85	
05/10/05	09:03	09:06	SP	3	6	0.62	6.64	0.317	*MLE	17.3	1.65	
05/10/05	09:10	09:21	SB	0	6	0.62	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
05/10/05	09:28	09:50	SP	20	26	2.69	6.93	0.272	*MLE	18.2	2.39	
05/10/05	09:50	10:00	SP	10	36	3.73	6.56	0.278	*MLE	17.6	2.12	
05/10/05	10:00	10:12	SP	10	46	4.77	6.49	0.279	*MLE	17.6	3.06	
05/10/05	10:12	10:20	SP	14	60	6.22	6.38	0.284	*MLE	17.5	3.16	
05/10/05	10:20	10:26	SP	5	65	6.74	6.36	0.285	*MLE	17.5	2.45	
7007												
Š												
2.5												
4												
Nepot Forman & Fact Develor 12 19 get 10: 0120555-500017 Date; 8175005												
Ž.												

S C S E N G I N E E R S WELL DEVELOPMENT RECOR								OPMENT RECORD	WELL NUMBER MW-08		
PROJECT	Form	er A-1	Ren	itals		JOB NUMBER 01203354.0	0	SITE 458 W. College Ave.	RECORDED BY Amy Yardley		
PROJECT LOCATION 458 W. College Ave. Santa Rosa, California						AIR TEMPERATURE 77 ° F		WEATHER clear	SUBCONTRACTOR None		
HAND PUMP (HP) SUBMERSIBLE PUMP (SP) BAILER (B) SURGE BLOCK (SB)	METHOD	X			stabilized. REMARKS	f 4 well volumes o		ntil discharge is clear and water			
HOLE DIAMET WELL CASING INSIDE DIA OUTSIDE I	s AM	d _H d _W ID d _W OI	=	8.0 2.0 2.5	-0.30 h	GROUND SURFACE	<u> </u>	PURGE VOLUME CALCULATE CASING VOLUME = $V_c = \pi \left(\frac{d_W D}{2}\right)^2 (TD_c - H) = 3$ = 0.27 ft ³	$3.14 \left(\frac{0.17}{2}\right)^2 (20.3 - 7.8)$		
DEPTH TO:								FILTER PACK PORE VOLUME =	=		

7.54 S 4.0

BASE OF SCREEN TD_s 20.3 BASE OF SUMP 20.3

ESTIMATED FILTER PACK POROSITY 0.25

Diameters in (inches) : Depths in (feet)

WATER LEVEL

BASE OF SEAL

FILTER PACK PORE VOLUME =
$$V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or } H)^{*})(P)$$

$$= 0.98 \text{ ft}^{3}$$

TOTAL WELL VOLUME =

$$V_T = V_C + V_F = 1.25 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 9.4 \text{ gal}$$

(* If S > H, use S; If S < H, use H)

		DEVE	OPME	NT LOG			LATIVE REMOVED	COMMENTS					
	DATE	TI	МЕ	METHOD	WATER REMOVED	GAL	WELL	рH	CONDUCTIVITY	TURBIDITY	TEMPERATURE	DISSOLVED OXYGEN	
		BEGIN	FINISH		(GAL)		VOLUMES	r	(mmhos/cm)	(NTU)	(°C)	(ppm)	
	05/09/05	13:00	13:03	SP	3	3	0.32	7.52	0.261	*MLE	17.8	2.09	
	05/09/05	13:03	13:06	SP	3	6	0.64	7.16	0.247	*MLE	17.6	1.85	
	05/09/05	13:10	13:23	SB	0	6	0.64	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
	05/09/05	13:28	13:50	SP	20	26	2.77	6.98	0.245	*MLE	17.8	2.09	
	05/09/05	13:50	14:07	SP	10	36	3.84	6.61	0.255	*MLE	17.8	2.93	
	05/09/05	14:07	14:20	SP	10	46	4.91	6.61	0.269	*MLE	17.9	3.32	
	05/09/05	14:20	14:32	SP	10	56	5.98	6.43	0.272	*MLE	17.9	3.9	
	05/09/05	14:32	14:43	SP	10	66	7.04	6.46	0.273	*MLE	17.8	4.31	
	05/09/05	14:43	14:49	SP	5	71	7.58	6.45	0.271	378	17.9	3.94	
	05/09/05	14:49	14:52	SP	3	74	7.90	6.45	0.271	145	17.8	4.41	
2005	05/09/05	14:52	14:55	SP	3	77	8.22	6.49	0.271	10	17.8	4.06	
e: 8/1,	05/09/05	14:55	14:58	SP	3	80	8.54	6.47	0.271	10	17.8	3.86	
J Dat													
00.GP													
3354.													
: 0120													
Project ID: 01203354.00.GPJ Date: 8/1/2005													
NT 2													
OPME													
VELC													
T DE													
Report Form: WELL DEVELOPMENT 2													
Form													
Кероп													

								WELL NUMBER
SCS ENGINEERS						WELL DEVEL	MW-09	
PROJECT						JOB NUMBER	SITE	RECORDED BY
	Form	er A-1	Rer	ıtals		01203354.00	458 W. College Ave.	Amy Yardley
PROJECT LOCATION						AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
458 W. College Ave. Santa Rosa, California						77 ° F	clear	None
HAND PUMP (HP) SUBMERSIBLE PUMP (SP) BAILER (B) SURGE BLOCK (SB)		X			stabilized. REMARKS	nterface probe used	ntil discharge is clear and water	
HOLE DIAMETI WELL CASING INSIDE DIA OUTSIDE DEPTH TO: WATER LE	AM DIAM	d _H d _W ID d _W OE		8.0 2.0 2.5	→ d _w → -0.50 h	GROUND SURFACE (S) H S TD	PURGE VOLUME CALCULAT CASING VOLUME = $V_{c} = \pi \left(\frac{d_{w}ID}{2}\right)^{2} (TD_{c} - H) = 0.28 \text{ ft}^{3}$ FILTER PACK PORE VOLUME = $V_{c} = \pi \left[\left(\frac{d_{H}}{d_{H}}\right)^{2} + \left(\frac{d_{W}OD}{d_{W}OD}\right)^{2}\right]^{2}$	$3.14 \left(\frac{0.17}{2}\right)^2 (20.5 - 7.6)$

 \dot{TD}_{C}

WELL CASING

INSIDE DIAM

OUTSIDE DIAM

OUTSIDE DIAM $d_W ID = 2.0$ -0.50 hH

OUTSIDE DIAM $d_W OD = 2.5$ DEPTH TO:

WATER LEVEL h = 7.05BASE OF SEAL S = 4.0BASE OF SCREEN $TD_S = 20.5$ BASE OF SUMP $TD_C = 20.5$ ESTIMATED FILTER

P = 0.25

PACK POROSITY

Diameters in (inches): Depths in (feet)

 $V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or H})^{*})(P)$ = 1.02 ft³

TOTAL WELL VOLUME =

 $V_T = V_C + V_F = 1.30 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 9.7 \text{ gal}$

(* If S > H, use S; If S < H, use H)

	DEVE	OPME	NT LOG		CUMU TOTAL F	LATIVE REMOVED		WATER		COMMENTS		
DATE	TII BEGIN	ME FINISH	METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
05/10/05	11:00	11:03	SP	3	3	0.31	6.6	1.86	*MLE	16.7	1.73	
05/10/05	11:03	11:06	SP	3	6	0.62	6.64	1.34	*MLE	16.5	1.44	
05/10/05	11:10	11:23	SB	0	6	0.62	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
05/10/05	11:27	11:48	SP	20	26	2.67	6.89	1.24	*MLE	17.2	3.98	
05/10/05	11:48	11:56	SP	4	30	3.08	6.64	1.16	647	16.9	5.64	
05/10/05	11:56	12:04	SP	5	35	3.59	6.62	1.15	331	16.8	5.08	
05/10/05	12:04	12:15	SP	5	40	4.11	6.56	0.902	552	16.9	6.18	
05/10/05	12:15	12:23	SP	5	45	4.62	6.55	0.898	521	16.9	6.03	
05/10/05	12:23	12:28	SP	3	48	4.93	6.56	0.898	554	16.9	6.47	
,												
000010 20000010 2000010 2000010 2000010 2000010 200000000												
5												
100 H 200 H												

SCSE	N G	ΙN	E	E R	S	WELL DI	EVEL	OPMENT RECORD	WELL NUMBER MW-10
PROJECT						JOB NUMBER		SITE	RECORDED BY
	Form	er A-1	Ren	tals		0120335	54.00	458 W. College Ave.	Amy Yardley
PROJECT LOCATION	I					AIR TEMPERATU	URE	WEATHER	SUBCONTRACTOR
458 W. C	College A	ve. Saı	nta F	Rosa, C	alifornia	77 °	F	clear	None
	METHOD				DEVELOPMENT CI	RITERIA			
HAND PUMP (HP)					Minimum of stabilized.	f 4 well volum	es or ur	itil discharge is clear and water	r characteristics have
SUBMERSIBLE PUMP (SP)		X			REMARKS * Oil/water	intarfaca nrah	haan a	to check for NAPLs. MLE = M	atar I imit Evcaadad
BAILER (B)					(>999 NTU's		e useu	to check for IVAI Es. WILE - WI	etti Liint Exceeded
SURGE BLOCK (SB)		X			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-)-			
								PURGE VOLUME CALCULAT	ION
HOLE DIAMET	ER	d_{H}	=	8.0	→ d _w			CASING VOLUME =	
WELL CASING INSIDE DIA		d_wID		2.0	-0.40 h	- GROUND SUR	FACE (S)	$V_{c} = \pi \left(\frac{d_{W}ID}{2}\right)^{2} (TD_{c} - H) = 3$	$3.14 \left(\frac{0.17}{2}\right)^2 (20.4 - 7.9)$
OUTSIDE I	DIAM	d_wOD) =	2.5	<u> </u>	_		= 0.27 ft ³	
DEPTH TO: WATER LE BASE OF S		h S	=	7.49 4.0		TI	\mathbf{D}_{s}	FILTER PACK PORE VOLUME = $V_F = \pi \left[\left(\frac{d_H}{2} \right)^2 - \left(\frac{d_W OD}{2} \right)^2 \right]$	

 $\begin{array}{ll} \text{BASE OF SCREEN} & \text{TD}_{\text{S}} \\ \text{BASE OF SUMP} & \text{TD}_{\text{C}} \end{array}$ 20.4 TD_{C} 20.4 ESTIMATED FILTER PACK POROSITY = 0.25 → d_H Diameters in (inches) : Depths in (feet)

= 0.99 ft TOTAL WELL VOLUME = $V_T = V_C + V_F =$ 1.26 ft ³ x 7.48 gal/ft ³ = 9.4 gal

(* If S > H, use S; If S < H, use H)

	DEVE	_OPMEI	NT LOG			LATIVE EMOVED		WATER	CHARACT	ERISTICS		COMMENTS
DATE	TII BEGIN	ME FINISH	METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
05/10/05	12:45	12:48	SP	3	3	0.32	6.76	1.52	*MLE	19	3.02	
05/10/05	12:48	12:53	SP	3	6	0.64	6.73	0.702	*MLE	19.1	1.24	
05/10/05	13:00	13:14	SB	0	6	0.64	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
05/10/05	13:23	13:45	SP	20	26	2.76	6.98	0.472	*MLE	19.6	2.33	Surgeu Weil
05/10/05	13:45	15:04	SP	14	40	4.25	6.5	0.433	*MLE	19.3	2.36	
05/10/05	15:04	15:17	SP	10	50	5.31	6.47	0.428	941	19.1	3.24	
05/10/05	15:17	15:23	SP	5	55	5.84	6.46	0.426	917	19.1	3.01	
05/10/05	15:23	15:30	SP	5	60	6.38	6.45	0.425	*MLE	19.2	2.54	
2005												
Project ID: 01203354 00. GPJ Date: 87/2005												
J Dat												
00.GP												
3354												
0:012												
ject II												
2 Pro												
COPM												
DEVE												
Report Form: WELL DEVELOPMENT												
); 												
ort For												
Rep												

S C S E	N G	IN	ΕE	R S	1	WELL	DEVEL	OPMEN	T RECOR	D	NUMBER MW-11
PROJECT					,	JOB NUMI	BER	SITE		RECOL	RDED BY
	Forn	ier A-1 l	Rentals			012	203354.00	458 V	V. College Ave		Amy Yardley
PROJECT LOCATION						AIR TEMP	ERATURE	WEATHER	_	SUBCO	ONTRACTOR
458 W. C	ollege A	Ave. San	ta Rosa	, Califor	nia		77 ° F		clear		None
	METHO	D		DEVE.	LOPMENT CRI	TERIA					
LIAND DUMP (UP)					inimum of a bilized.	4 well v	olumes or un	itil discharge	e is clear and w	ater char	acteristics have
HAND PUMP (HP)		X		REMA	RKS						
SUBMERSIBLE PUMP (SP)		Λ		- *	Oil/water in	terface	probe used t	to check for l	NAPLs. MLE	= Meter L	imit Exceeded
BAILER (B)					999 NTU's)		•				
SURGE BLOCK (SB)		X									
HOLE DIAMETI WELL CASING INSIDE DIA OUTSIDE D DEPTH TO: WATER LE: BASE OF S BASE OF S	.M DIAM VEL EAL CREEN	$\begin{array}{c} d_{\text{H}} \\ \\ d_{\text{W}} \text{ID} \\ \\ d_{\text{W}} \text{OD} \\ \\ \\ \text{h} \\ \\ \text{S} \\ \\ \text{TD}_{\text{S}} \\ \\ \\ \text{TD}_{\text{C}} \\ \end{array}$		-0.29 1 1	→ d _w	GROUNI H	S TD _S TD _C	CASING VC $V_{c} = \pi \left(\frac{d}{d}\right)$ $= 0.29$ FILTER PA $V_{F} = \pi \left[\left(-\frac{d}{d}\right)\right]$ $= 1.06$	$\frac{\text{W} D}{2}$ (TD _c - H Oft ³ CK PORE VOLU $\frac{d_H}{2}$ 2 - $\left(\frac{d_WOD}{2}\right)$) = 3.14 ((20.3 - 6.9) (20.3 - 6.9)
ESTIMATED FII PACK POROSI Diameters in (inches)	TY	P s in (feet)	= 0.2		→ d _H		<u> </u>	$V_T = V_C + V$		•	al/ft ³ = 10.1 gal
DEVEL	OPME	NT LOG	T		MULATIVE REMOVED		WATE	R CHARACT	ERISTICS		COMMENTS
DATE TIM	IE .	METHOD	WATE		WELL VOLUMES	pН	CONDUCTIVIT (mmhos/cm)	Y TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN	

	DEVELOPMENT LOG					REMOVED		WATER		COMMENTS		
DATE	TII BEGIN	FINISH	METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
05/10/05	15:06	15:09	SP	3	3	0.30	6.68	0.443	*MLE	17.4	2.57	
05/10/05	15:09	15:13	SP	3	6	0.60	6.56	0.461	*MLE	16.9	3.66	
05/10/05	15:18	15:29	SB	0	6	0.60	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
05/10/05	15:34	15:56	SP	20	26	2.58	6.57	0.402	*MLE	17.3	2.96	
05/10/05	15:56	16:10	SP	16	40	3.97	6.45	0.395	709	16.8	3.25	
05/10/05	16:10	16:16	SP	5	45	4.46	6.44	0.399	576	16.8	3.45	
05/10/05	16:16	16:23	SP	5	50	4.96	6.45	0.396	303	16.7	3.41	
05/10/05	16:23	16:28	SP	5	55	5.46	6.44	0.395	285	16.7	3.29	
05/10/05	16:28	16:31	SP	3	58	5.75	6.43	0.395	361	16.6	3.27	
אביים ביים אינים ביים ביים אינים ביים ביים אינים ביים ביים ביים ביים ביים ביים ביים												

	SEN	1 G I I	NEEF	RS		20	PURGE	uarter	עט		WELL NUMBER MW-01 RECORDED BY
PROJECT		Former A	-1 Rental	s		JOB NUMBE 01203	к 3354.00	SITE 458 V	W. College		RECORDED BY Amy Yardley
			GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), o	inimum of a wells), un	3 wetted catil water p	asing volun	nes (or 5 gallons (pH, temp., cond.)
HAND PU	MP SIBLE PUMP					REMARKS					
BAILER	SIBLE FUIVIP		<u>X</u>	X	_	* Oil/wat	er interface	e probe use	d to check	for NAPL	s.
OTHER											
CASING	DIAMETER	R (D _C):2.0)	→ D _c	—	DATE OF	SAMPLING:			5	5/11/2005
DEPTH T			. •		GROUND (S)	WEATHE	R:				Sunny
WATE		5.8		T		TAGGED	WATER LEV	ELS FROM	TOC:	5	.82 / 5.83
NAPL:		n.a	-0.51			TAGGED	WELL DEPT	H FROM TO	C:		19.41
	IICKNESS:	n.a		h	н	PURGE \	OLUME (3 C	ASING VOL	UMES):	6.	7 gallons
SCREEN	DEPTH:	F /	,		TD	DEPTH T	O WATER FO	OR 80% REC	CHARGE:	8.56	ft. below TOC
TOP:	214	5.0		↓ ▼	TD_{C}	TIME OF	SAMPLING:				11:21
BOTTO						DEPTH T	O WATER A	T TIME OF S	AMPLING:	6.02	ft. below TOC
	EPTH (TD _c		00		SCREEN	APPEAR	ANCE OF SA	MPLE:		Slig	ghtly cloudy
	n (inches) : D					LABORA	TORY:			Analy	tical Sciences
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	:: [7.48 gal/ft³]:	2.23 gallo	ns		SEE CHA	IN OF CUST	ODY FORM	FOR ANAL	YTICAL INFO	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER (CHARACTE	ERISTICS		COMMENTS
DATE		ME	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
	BEGIN	FINISH	` ′				, ,	40.4			
5/11/05	10:47	10:50	3	3	1.35	6.65	0.859	491	18.9	2.21	
5/11/05	10:50	10:52	2	5	2.24	6.63	0.838	10	18.8	2.14	
5/11/05	10:52	10:54	2	7	3.14	6.60	0.848	10	18.7	1.85	
											1
											-
						-					
											-

	SEN	IGIN	NEEF	R S		20	PURGE	uarter	עט		MW-02
ROJECT		Former A	-1 Rental	s		JOB NUMBE 01203	к 3354.00	SITE 458 V	W. College		RECORDED BY Amy Yardley
			GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), o	inimum of (wells), unt	3 wetted catil water p	asing volun	nes (or 5 gallons (pH, temp., cond.)
HAND PUN						REMARKS	(======================================				
BAILER	IBLE PUMP		<u>X</u>	X		* Oil/wat	er interface	e probe use	d to check	for NAPLs	S.
OTHER											
CASING	DIAMETER	(D _C):2.0)	→ D _c	—	DATE OF	SAMPLING:			5	5/11/2005
DEPTH T			. •		GROUND (S)	WEATHE	R:		_		Sunny
WATE	≺ (h):	6.1		T		TAGGED	WATER LEV	ELS FROM	TOC:	6	.13 / 6.14
NAPL:		n.a	0.25			TAGGED	WELL DEPT	H FROM TO	C:		19.9
	ICKNESS:	n.a		h	н	PURGE \	OLUME (3 C	ASING VOL	UMES):	6.	7 gallons
SCREEN	DEPTH:	E (DEPTH T	O WATER FO	OR 80% REC	HARGE:	8.86 1	ft. below TOC
TOP:	NA.	5.0		<u>↓</u> _▼	TD _C	TIME OF	SAMPLING:				16:30
BOTTO					-	DEPTH T	O WATER A	T TIME OF S	AMPLING:	8.32 1	ft. below TOC
	EPTH (TD _c	· -	טט_		SCREEN INTERVAL	APPEAR	ANCE OF SA	MPLE:			Clear
	n (inches) : D					LABORA	TORY:			Analy	tical Sciences
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.22 gallo	ns		SEE CHA	IN OF CUST	ODY FORM	FOR ANAL	TICAL INFO	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TII	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
F/11/05			` ′		1.25	6.07	0.200	211			
5/11/05	15:45	15:48	3	3	1.35	6.87	0.390	311	19.9	4.35	
5/11/05	15:48	15:50	2	5	2.25	6.84	0.393	283	19.3	3.45	
5/11/05	15:50	15:52	2	7	3.15	6.78	0.430	234	18.6	2.97	
											1
											
											
											<u> </u>

S C	SEN	IGIN	NEEF	RS		20	PURGE	uarter	עט		WELL NUMBER MW-03 RECORDED BY
ROJECT		Former A	-1 Rental	s		JOB NUMBE 01203	к 3354.00	SITE 458 V	W. College		Amy Yardley
			GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), o	inimum of a wells), un	3 wetted catil water p	asing volun	nes (or 5 gallons (pH, temp., cond.)
HAND PUN	MP IBLE PUMP					REMARKS	(===,,,,,				
BAILER OTHER	IBLE PUIVIP		<u>x</u>	X		* Oil/wat	er interface	e probe use	d to check	for NAPLs	s.
CASING	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:			5	5/11/2005
DEPTH T				\rightarrow D _C	00011110	WEATHE	R:				Sunny
WATE	R (h):	5.7	3 🔻	<u> </u>	SURFACE (S)	TAGGED	WATER LEV	ELS FROM	TOC:	5	.74 / 5.73
NAPL:		n.a	.* -0.20			TAGGED	WELL DEPT	H FROM TO	 C:		19.83
NAPL TH	ICKNESS:	n.a			H	PURGE \	OLUME (3 C	ASING VOL	UMES):	6.	9 gallons
SCREEN	DEPTH:			h			O WATER FO				ft. below TOC
TOP:		5.0)		$TD_{\rm C}$		SAMPLING:				16:45
BOTTO	DM:	20.	0	<u> </u>	<u> </u>		O WATER A	T TIME OF S	AMPI ING:	7 68 1	ft. below TOC
TOTAL D	EPTH (TD _c): 20.0	00	==	SCREEN		ANCE OF SA			7.00	Clear
Diameters in	n (inches) : D	epths in (feet)			INTERVAL	LABORA		IVII LL.		Δnaly	tical Sciences
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.30 gallo	ns_	<u> </u>		IN OF CUST	ODY FORM	FOR ANAL		
	PURGIN	IG DATA			JLATIVE REMOVED		WATER (CHARACTE	RISTICS		COMMENTS
DATE	TII	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	16:10	16:13	3	3	1.31	6.89	0.451	10	19.7	2.10	
5/11/05	16:13	16:15 16:17	2	5 7	2.18	6.57	0.497	10	19.2	2.54	
5/11/05	16:15	10:17	2	,	3.05	6.49	0.486	10	19.1	2.38	
											
											<u> </u>

S C	SEN	GII	VEEF	S			PURGE 005 - 2nd Q				MW-04 RECORDED BY
KOJECI		Former A	-1 Rental:	s			3354.00		V. College		Amy Yardley
HAND PUN	ИΡ	<i>MET</i>	GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), or	. wells), unt	il water p	asing volun arameters	nes (or 5 gallons (pH, temp., cond.)
SUBMERS BAILER OTHER	IBLE PUMP		<u>X</u>	X	_	* Oil/wat Exceeded	er interface l (>999 NTI	e probe use U's).	d to check	for NAPL	s; MLE = Meter L
CASING	DIAMETER	(D _c): 2.0)	- 5	1 =	DATE OF	SAMPLING:			5	5/11/2005
DEPTH T	O:		1	\rightarrow D _C	GROUND (S)	WEATHE	R:				Sunny
WATE	₹ (h):	7.6		T 🖺		TAGGED	WATER LEV	ELS FROM	гос:	7	.65 / 7.63
NAPL:		n.a	·* -0.37			TAGGED	WELL DEPT	H FROM TO	C:		19.76
NAPL TH	ICKNESS:	n.a		h h	H	PURGE \	OLUME (3 C	ASING VOL	JMES):	5.	.9 gallons
SCREEN TOP:	DEPTH:	F (,		TD	DEPTH T	O WATER FO	OR 80% REC	HARGE:	10.03	ft. below TOC
BOTTO	NA.	5.0		<u> </u>	TD _C	TIME OF	SAMPLING:		_		14:40
						DEPTH T	O WATER A	T TIME OF S	AMPLIN <u>G:</u>	9.86	ft. below TOC
	EPTH (TD _c		JU		SCREEN	APPEAR	ANCE OF SA	MPLE:			Cloudy
	n (inches) : De				<u> </u>	LABORA ⁻	TORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _C / 2) ²]		1.96 gallor	_		SEE CHA	IN OF CUST	ODY FORM	FOR ANALY	TICAL INFO	RMATION.
	PURGIN	G DATA	I	CUMULATIVE TOTAL REMOVED			WATER	CHARACTE	RISTICS		COMMENTS
DATE	BEGIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	12:58	13:00	2	2	1.02	6.45	0.369	*MLE	18.8	3.68	
5/11/05	13:00	13:02	2	4	2.04	6.48	0.365	858	18.4	2.21	
5/11/05	13:02	13:04	2	6	3.06	6.50	0.348	547	18.4	2.25	
											1
					+						1
					1						

S C	SEN	1 G I I	NEEF	RS		20	PURGE	uarter	עט		WELL NUMBER MW-05 RECORDED BY
ROJECT		Former A	-1 Rental	s		JOB NUMBE 01203	к 3354.00	SITE 458 V	W. College		Amy Yardley
			GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), o	inimum of (wells), unt	3 wetted catil water p	asing volun	nes (or 5 gallons (pH, temp., cond.)
HAND PUN	MP IBLE PUMP		<u> </u>			REMARKS					
BAILER OTHER	IDEE I OWII		<u> </u>	X	_	* Oil/wat	er interface	e probe use	d to check	for NAPLs	S.
CASING	DIAMETER	(D _C): 2.0)			DATE OF	SAMPLING:			5	5/11/2005
DEPTH T	O:			\rightarrow D _C		WEATHE	R:				Sunny
WATE	₹ (h):	5.5	7 *	<u> </u>	SURFACE (S)	TAGGED	WATER LEV	ELS FROM	TOC:	5	.57 / 5.57
NAPL:		n.a	* -0.53			TAGGED	WELL DEPT	H FROM TO	C:		19.83
NAPL TH	ICKNESS:	n.a			H	PURGE \	OLUME (3 C	ASING VOL	UMES):	6.	8 gallons
SCREEN	DEPTH:			h			O WATER FO				ft. below TOC
TOP:		5.0)		TD_{c}	TIME OF	SAMPLING:				14:27
BOTTO	DM:	20.	0	<u>* </u>	-		O WATER A	T TIME OF S	AMPLING [.]	6.89	ft. below TOC
TOTAL D	EPTH (TD _c	20.0	00		SCREEN		ANCE OF SA		<u></u>	5.00	Clear
Diameters in	n (inches) : D	epths in (feet)			-	LABORA		= = ·		Analy	tical Sciences
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.27 gallor	ns				ODY FORM	FOR ANAL	TICAL INFO	
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TII	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	12:35	12:38	3	3	1.32	6,51	0.259	10	16.4	1.63	
5/11/05	12:38	12:40	2	5	2.20	6.58	0.239	10	15.9	3.11	
5/11/05	12:30	12:40	2	7	3.09	6.48	0.239	10	15.7	1.48	
3/11/03	12:40	12:42	2		3.09	0.40	0.237	10	15.7	1.40	
											1
											1
						-					
											<u> </u>
											<u> </u>

S C	S E N	IGIN	NEEF	₹ 5			PURGE 005 - 2nd Q				MW-06
ROJECI		Former A	-1 Rentals	s			3354.00		W. College		Amy Yardley
HAND PU	ЛΡ		GING THOD	SAMPLIN METHO		minimun stabilized	RITERIA Mi n for 2" dia l (±10%), o	. wells), un	til water p	asing volun arameters	nes (or 5 gallons (pH, temp., cond.) l
	IBLE PUMP		X	X		* Oil/wat	er interface	e probe use	d to check	for NAPL	s.
CASING	DIAMETER	(D _C): 2.0)	- 15	1 -	DATE OF	SAMPLING:			5	5/11/2005
DEPTH T	·O:		1	\rightarrow D _C	GROUND (S)	WEATHE	R:				Sunny
WATE	R (h):	5.6		<u> </u>	SURFACE	TAGGED	WATER LEV	ELS FROM	TOC:	5	.61 / 5.61
NAPL:		n.a	-0.61			TAGGED	WELL DEPT	H FROM TO	C:		19.72
	ICKNESS:	n.a		h	н	PURGE \	/OLUME (3 C	ASING VOL	UMES):	6.	.7 gallons
SCREEN TOP:	DEPTH:	5.0	า		TD _c	DEPTH T	O WATER FO	OR 80% REC	HARGE:	8.37	ft. below TOC
BOTTO)M-	20.		<u> </u>		TIME OF	SAMPLING:				11:35
	EPTH (TD _o			 		DEPTH T	O WATER A	T TIME OF S	AMPLIN <u>G:</u>	5.93	ft. below TOC
	n (inches) : D				SCREEN	APPEAR	ANCE OF SA	MPLE:		Sliç	ghtly cloudy
	NG VOLUME				<u> </u>	LABORA	TORY:			Analy	tical Sciences
[TD _c - H] [3	3.14 (D _c / 2) ²]	[7.48 gal/ft³]:	2.25 gallor	ns_		SEE CHA	IN OF CUST	ODY FORM	FOR ANALY	TICAL INFO	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	11:05	11:08	3	3	1.33	6.61	0.679	10	19.3	1.76	
5/11/05	11:08	11:10	2	5	2.22	6.59	0.697	10	19.2	1.30	
5/11/05	11:10	11:11	2	7	3.11	6.56	0.712	10	19.1	2.16	
				1		1	1			1	1

	SEN	IGIN	NEEF	RS		20	PURGE	uarter	אט		WELL NUMBER MW-07
ROJECT		Former A	-1 Rental	s		JOB NUMBE 01203	к 3354.00	SITE 458 V	V. College		RECORDED BY Amy Yardley
			GING THOD	SAMPLIN METHO		minimun	RITERIA Mi n for 2" dia l (±10%), o	inimum of 3 wells), unt	3 wetted ca	asing volum	nes (or 5 gallons (pH, temp., cond.)
HAND PUN SUBMERS BAILER OTHER	MP SIBLE PUMP		X	X		* Oil/wat		e probe use		for NAPLs	s; MLE = Meter L
CASING	DIAMETER	! (D _c): 2.0)			DATE OF	SAMPLING:			5	5/11/2005
DEPTH T		· • —		\rightarrow D _C		WEATHE	R:				Sunny
WATER	R (h):	7.4	5 V	<u> </u>	SURFACE (S)	TAGGED	WATER LEV	ELS FROM	TOC:	7	.43 / 7.45
NAPL:		n.a	·* -0.53			TAGGED	WELL DEPT	H FROM TO	C:		19.9
NAPL TH	ICKNESS:	n.a		h h	H	PURGE \	OLUME (3 C	ASING VOL	JMES):	6.	2 gallons
SCREEN TOP:	DEPTH:	5.7			TD _c		O WATER FO	OR 80% REC	HARGE:	9.99 f	ft. below TOC 15:00
BOTTO	OM:	20.	7	┸║┸	<u> </u>			T TIME OE Q	AMDLING:	0.01 f	
TOTAL D	EPTH (TD _c): 20.7	70	=	SCREEN		O WATER AT ANCE OF SA		AIVIPLIING:	9.011	ft. below TOC
Diameters in	n (inches) : De	epths in (feet)			INTERVAL	LABORA		IVIFLE.		Analys	Clear tical Sciences
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.08 gallo	ns_	<u> </u>			ODY FORM	FOR ANAL	TICAL INFO	
	PURGIN	IG DATA			JLATIVE REMOVED		WATER (CHARACTE	RISTICS		COMMENTS
DATE	TII	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	13:15	13:17	2	2	0.96	6.83	0.275	*MLE	18.2	4.26	
5/11/05	13:17	13:19	2	4	1.93	6.75	0.360	*MLE	17.7	4.45	
5/11/05	13:19	13:21	2	6	2.89	6.74	0.365	*MLE	17.6	4.51	

	SEN	1 G I 1	NEEF	RS		20	PURGE	uarter	עא		MW-08
Former A-1 Rentals					JOB NUMBER					RECORDED BY Amy Yardley	
PURGING SAMPLING METHOD METHOD				PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimum for 2" dia. wells), until water parameters (pH, temp., cond.) has stabilized (±10%), or until dry.							
HAND PUN SUBMERS BAILER OTHER	MP IBLE PUMP		X	X	<u> </u>	* Oil/wat		e probe use		for NAPLs	s; MLE = Meter L
CASING	DIAMETER	R (D _o): 2.0)			DATE OF	SAMPLING:			5	5/11/2005
CASING DIAMETER (D_c): 2.0 DEPTH TO:						WEATHE					Sunny
WATE	₹ (h):	8.4	1 🔻	<u> </u>	SURFACE (S)	TAGGED	WATER LEV	ELS FROM	гос:	8	.41 / 8.41
NAPL:		n.a	·* -0.30			TAGGED	WELL DEPT	H FROM TO	C:		20.3
NAPL TH	ICKNESS:	n.a		h h	H	PURGE \	OLUME (3 C	ASING VOL	JMES):	5.	7 gallons
SCREEN TOP:	DEPTH:	5.3					O WATER FO	OR 80% REC	HARGE:	10.73	ft. below TOC 13:50
BOTTO	DM:	20.	3	┸	<u> </u>		O WATER A	T TIME OF S	AMPLING:	10.10	ft. below TOC
TOTAL D	EPTH (TD _c):20.3	30		SCREEN		ANCE OF SA		AMPLING:	10.10	Clear
Diameters in	n (inches) : D	epths in (feet)			INTERVAL	LABORA		IVIFLE.		Analy	tical Sciences
	NG VOLUME 3.14 (D _c / 2) ²]		1.89 gallo	ns	<u> </u>			ODY FORM	FOR ANAL	YTICAL INFO	
	PURGING DATA CUMULATIVE TOTAL REMOVED					WATER CHARACTERISTICS					COMMENTS
DATE	TII	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	11:45	11:47	2	2	1.06	7.33	0.254	*MLE	18.4	3.91	
5/11/05	11:47	11:49	2	4	2.11	7.12	0.250	*MLE	18.3	3.75	
5/11/05	11:49	11:50	2	6	3.17	6.89	0.249	*MLE	18.0	3.05	

SCS ENGINEERS PROJECT						WELL 20 JOB NUMBE	MW-09					
KOJECI		Former A	-1 Rental:	s								
PURGING SAMPLING METHOD HAND PUMP SUBMERSIBLE PUMP X				PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimum for 2" dia. wells), until water parameters (pH, temp., cond.) has stabilized (±10%), or until dry. REMARKS								
BAILER OTHER	IBLE PUMP		<u>x</u>	X		* Oil/wat Exceeded	ter interface l (>999 NTU	e probe use U's).	d to check	for NAPL	s; MLE = Meter L	
CASING DIAMETER (D _c): 2.0					DATE OF SAMPLING:					5/11/2005		
DEPTH T	O:		1	\rightarrow D _C	GROUND SURFACE (S)	WEATHE	R:				Sunny	
WATE	R (h):	7.1		T 2	SORI ACL	TAGGED	WATER LEV	ELS FROM	TOC:	7	7.12 / 7.12	
NAPL:		n.a	.* -0.50			TAGGED	WELL DEPT	H FROM TO	C:		20.06	
NAPL TH	ICKNESS:	n.a		h h	H	PURGE \	OLUME (3 C	ASING VOL	JMES):	6	.3 gallons	
SCREEN TOP:	DEPTH:	<i>- - - - - - - - - -</i>	-			DEPTH T	O WATER FO	OR 80% REC	HARGE:	9.70	ft. below TOC	
BOTTO	NA.	5.5		¥∭₹	TD _C	TIME OF	SAMPLING:				15:15	
				- 1		DEPTH T	O WATER A	TTIME OF S	AMPLIN <u>G:</u>	9.06	ft. below TOC	
	EPTH (TD _c		<u> </u>		SCREEN	APPEAR	ANCE OF SA	MPLE:		Sli	ghtly cloudy	
	n (inches) : De				<u> </u>	LABORA [*]	TORY:			Analy	rtical Sciences	
	NG VOLUME 3.14 (D _c / 2) ²]		2.10 gallor	_		SEE CHA	IN OF CUST	ODY FORM	FOR ANALY	TICAL INFO	PRMATION.	
	PURGIN		Ι		JLATIVE REMOVED		WATER (CHARACTE	RISTICS		COMMENT	
DATE	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
5/11/05	13:34	13:36	2	2	0.95	6.73	1.190	869	17.3	6.25		
5/11/05	13:36	13:38	2	4	1.90	6.67	0.981	*MLE	16.7	6.55		
5/11/05	13:38	13:39	2	6	2.85	6.55	0.960	*MLE	16.5	4.05		
									1			

	SEN	IGIN	NEEF	S		20	PURGE	uarter	KU		MW-10
ROJECT		Former A	-1 Rentals	s		SITE SITE SITE 458 W. College Ave.					RECORDED BY Amy Yardley
PURGING SAMPLING METHOD METHOD				PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimum for 2" dia. wells), until water parameters (pH, temp., cond.) stabilized (±10%), or until dry.							
HAND PUN SUBMERS BAILER OTHER	MP IBLE PUMP		<u>x</u>	X		REMARKS * Oil/wat		e probe use		for NAPL	s; MLE = Meter L
CASING DIAMETER (D _c): 2.0					DATE OF	SAMPLING:			5	5/11/2005	
DEPTH TO: WATER (b): 7.60 DC GROUND SURFACE (S)					WEATHE	R:				Sunny	
WATER	₹ (h):	7.6	<u> </u>	<u></u>	SURFACE	TAGGED	WATER LEV	ELS FROM	гос:	7	7.59 / 7.6
NAPL:		n.a	·* -0.40			TAGGED	WELL DEPT	H FROM TO	C:		19.94
	ICKNESS:	n.a		h	Н	PURGE \	OLUME (3 C	ASING VOL	JMES):	6.	1 gallons
SCREEN TOP:	DEPTH:	5.4	1		TD_{C}		O WATER FO	OR 80% REC	HARGE:	10.08	ft. below TOC
вотто	DM:	20.	4	<u>▼</u> ▼	<u> </u>		SAMPLING:	- TIME OF O		0.00	14:05
TOTAL D	EPTH (TD _c): 20.4	40	==	SCREEN		O WATER A		AMPLIN <u>G:</u>	9.89	ft. below TOC
Diameters in	n (inches) : De	epths in (feet)			INTERVAL	LABORA	ANCE OF SA	IVIPLE:		Anch	Clear
ONE CASI [TD _c - H] [3	NG VOLUME 3.14 (D _c / 2) ²]	: [7.48 gal/ft³]:	2.02 gallor	ns	!] —— ▼		IORY: IIN OF CUST	ODY FORM	 FOR ANALY		tical Sciences RMATION.
PURGING DATA CUMULATIVE TOTAL REMOVED				WATER CHARACTERISTICS					COMMENTS		
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
5/11/05	12:03	12:05	2	2	0.99	6.72	0.503	*MLE	19.5	3.23	
5/11/05	12:05	12:07	2	4	1.98	6.68	0.491	*MLE	19.2	3.54	
5/11/05	12:07	12:09	2	6	2.97	6.63	0.493	*MLE	19.1	2.79	
0,11,00	12107	12.02	_			0.00	01.50	1,122			
						-					
						-					
											

SCS ENGINEERS PROJECT						WELL 20 JOB NUMBE	MW-11					
KOJECI		Former A	-1 Rental	s								
PURGING SAMPLING METHOD HAND PUMP SUBMERSIBLE PUMP X				PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimum for 2" dia. wells), until water parameters (pH, temp., cond.) has stabilized (±10%), or until dry. REMARKS								
BAILER OTHER	IDEE I OWII		<u> </u>	X		* Oil/wat Exceeded	ter interface l (>999 NTI	e probe use U's).	d to check	for NAPL	s; MLE = Meter L	
CASING DIAMETER (D _c): 2.0					DATE OF SAMPLING:					5/11/2005		
DEPTH T	O:		1	\rightarrow D _C	GROUND SURFACE (S)	WEATHE	R:				Sunny	
WATE	₹ (h):	6.7		T 🖟		TAGGED	WATER LEV	ELS FROM	TOC:	6	.73 / 6.72	
NAPL:		n.a	-0.29			TAGGED	WELL DEPT	H FROM TO	C:		20.1	
	ICKNESS:	n.a		h	н	PURGE \	OLUME (3 C	ASING VOL	JMES):	6	5 gallons	
SCREEN TOP:	DEPTH:	E (2		TD_{C}	DEPTH T	O WATER FO	OR 80% REC	HARGE:	9.38	ft. below TOC	
BOTTO	NA.	5.3		<u> </u>		TIME OF	SAMPLING:		_		14:15	
						DEPTH T	O WATER A	T TIME OF S	AMPLIN <u>G:</u>	7.36	ft. below TOC	
	EPTH (TD _c	· —	<u>5U</u>		SCREEN	APPEAR	ANCE OF SA	MPLE:		Slig	ghtly cloudy	
	n (inches) : De	. ,]: 	LABORA	TORY:			Analy	tical Sciences	
	NG VOLUME 3.14 (D _c / 2) ²]		2.17 gallor	_		SEE CHA	AIN OF CUST	ODY FORM	FOR ANALY	TICAL INFO	RMATION.	
	PURGING DATA CUMULATIVE TOTAL REMOVED						COMMENTS					
DATE	BEGIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
5/11/05	12:21	12:24	3	3	1.38	6.62	0.414	*MLE	17.7	3.88		
5/11/05	12:24	12:25	2	5	2.31	6.69	0.426	*MLE	17.0	4.65		
5/11/05	12:25	12:27	2	7	3.23	6.67	0.422	*MLE	16.9	4.10		
									1			
											1	
						1						
											1	

Appendix D

Gregg Drilling and Testing CPT Reports

Max. Depth: 45.11 (ft)
Depth Inc.: 0.164 (ft)

SBT: Soil Behavior Type (Robertson 1990)

Depth Inc.: 0.164 (ft)

Appendix F

Well Survey Report dated July 14, 2005

JACOBS LAND SURVEYING 1625 PERSEUS CT. PETALUMA, CA. 94954 (707) 782-0733

DATE: 07-14-05 **JN** 03-960-S

TO: SCS Engineers

3645 West wind Blvd.

Santa Rosa, Ca. 95403

RE: A1 Rents (Nation) 458 W. College Ave. Santa Rosa, Ca. Your Job No. 3354.00

On July 6, 2005 this office ran a closed level loop with a Zeiss Ni2 Auto Level from City of Santa Rosa Benchmark D-178, Elev. 134.46, (1929 NGVD), being a lead and tack in the top of curb on the northerly side of West College Ave. opposite the job site. Additional closed level loop was run to the remains of NGS Benchmark RV 175, Elev. 147.7NAVD 88*, (144.90 1929 NGVD) to verify Vertcon shift. On this same date, employing a Leica GS 20, latitudes and longitudes were derived for the monitoring wells.

MW#	Casing	Rim	Latitude	Longitude	Pos. Olty.	Comments
7	137.34	137.90	38.4455680	122.7324579	50.29cm	(A)(N)
8	137.90	138.20	38.4455801	122.7323196	60.43cm	(A)(N)
9	137.42	137.92	38.4454994	122.7326330	51.23cm	(A)(N)
10	137.97	138.37	38.4454450	122.7322843	59.18cm	(A)(N)
11	138.21	138.50	38.4453661	122.7323621	55.17cm	(A)(N)

Key (A) Allen head	(L) Large Bolt	(Sb) Small bolt
(N)(S)(E)(W) Direction	(B) Black mark	(P) Pressure
(M)Missing bolt/lock?	(OC) Outer casing	(HP) High point

Remarks

Found remains of Monel-Metal rivet (RV 175) in concrete base of RR signal, elevation agrees with City of Santa Rosa Benchmark plus Vertcon shift.

All wells recovered and observed were in god condition and resealed as found.

*Elevations shown above are NAVD 88, previous elevations were 1929 NGVD.

Steven H. Jacobs PLS 5296

Lic. Exp. 12-31-05